Although signal transduction mechanisms originating from receptors on the plasma membrane and targeted to metabolic and other enzymes/proteins localized in the cytoplasm or the nucleus have been extensively studied in animal cells, few such studies have focused on the mitochondrial energy producing machinery, i.e. the electron transport chain and ATP synthase complex (F0F1). Significantly, it was shown in an earlier collaborative study that platelet-derived growth factor (PDGF), which is linked in signal transduction pathways to tyrosine kinase-dependent phosphorylations, regulates the phosphorylation of the mitochondrial ATP synthase delta subunit in cortical neurons (Zhang et. al., 1995. J. Neurochem. 65, 2812-2815). This is a particularly intriguing finding in light of more recent reports demonstrating that ATP synthases are nanomotors with a central rotor, one component of which is the delta subunit. In this report, evidence is provided that the PDGF-dependent phosphorylation of the ATP synthase delta subunit is not confined to neuronal cells but can be demonstrated also in studies with PDGF-treated NIH3T3 and kidney cells. Evidence is provided also that phosphorylation of the ATP synthase delta subunit may involve its single tyrosine residue, and that this phosphorylation is modulated when the cell based assay includes lysophosphatidic acid (LPA), a phospholipid signaling molecules. Finally, results are presented of an analysis which revealed a number of potential tyrosine phosphorylation sites on three other subunits (alpha, beta, and gamma) of the F1 (catalytic) moiety of the mitochondrial ATP synthase, thus making this important complex a most attractive target for future signal transduction studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1567-7249(01)00036-8 | DOI Listing |
Plant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFdescribes the ability of biological macromolecules to transmit signals spatially through the molecule from an site – a site that is distinct from binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China. Electronic address:
Unlabelled: Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension.
Methods: Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition.
Biomed Pharmacother
January 2025
Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. Electronic address:
Purpose: Targeting mitochondrial ferroptosis presents a promising strategy for mitigating myocardial ischemia-reperfusion (I/R) injury. This study aims to evaluate the efficacy of the mitochondrial-targeted ferroptosis inhibitor SS-31@Fer-1 (elamipretide@ferrostatin1) in reducing myocardial I/R injury.
Methods: SS-31@Fer-1 was synthesized and applied to H9C2 cells subjected to hypoxia/reoxygenation (H/R) to assess its protective effects.
J Physiol Sci
January 2025
Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, 360101, Ado-Ekiti, Nigeria.
Androgen excess and metabolic abnormality largely contribute to the pathogenesis of polycystic ovarian syndrome (PCOS), which primarily precipitates ovarian dysfunction and infertility in reproductive-age women. Impaired mitochondrial function and epigenetic alteration have been linked to the development of PCOS. However, it is unknown whether acetate would exert a therapeutic effect on ovarian mitochondrial dysfunction in PCOS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!