Wave coupling exists in the wave propagation in multiple interacting ducts within a waveguide. One may use the segmentation approach, decoupling approach, eigenvalue approach, or the matrizant approach to derive the overall transfer matrix for the muffler section with interacting ducts, and then apply the terminal boundary conditions to obtain a two-by-two transfer matrix. In such instances, a boundary condition applied to a vector is given as a linear combination of its components. Spatial dimensions along with parameters like impedance of the perforated interface may yield numerical instability during computation leading to inaccurate prediction of the acoustic performance of mufflers. Here, an inherently stable boundary-condition-transfer approach is discussed to analyze the plane wave propagation in suchlike mufflers and applied to waveguides of variable cross-sectional area. The concept of pseudo boundary conditions applied to the state vector at an intermediate point is outlined. The method is checked for self-consistency and shown to be stable even for extreme geometries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.1931847 | DOI Listing |
Atten Percept Psychophys
January 2025
Department of Developmental and Social Psychology, University of Padova, via Venezia 8, 35131, Padova, Italy.
Numerical and nonnumerical magnitudes can be represented along a hypothetical left-to-right continuum, where smaller quantities are associated with the left side and larger quantities with the right side. However, these representations are flexible, as their intensity and direction can be modulated by various contextual cues and task demands. In four experiments, we investigated the spatial representation of visual speed.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Current lithium batteries experience significant performance degradation under extreme temperature conditions, both high and low. Traditional wide-temperature electrolyte designs typically addressed these challenges by manipulating the solvation sheath and selecting solvents with extreme melting/boiling points. However, these solvent-mediated solutions, while effective at one temperature extreme, invariably fail at the opposite end due to the inherent difficulties in maintaining solvent stability across wide temperatures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fuzhou University College of Chemical Engineering, College of Chemical Engineering, CHINA.
Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Environmental Sciences Postgraduate Program, Center of Engineering, Federal University of Pelotas, R. Benjamin Constant 989, Pelotas 96010-020, RS, Brazil.
Environmental pollution, stemming from the disposal of contaminants, poses severe threats to ecosystems and human health. The emergence of a new class of pollutants, termed emerging contaminants (ECs), in soil, water, and air has raised global concerns, aligning with the UN 2030 Agenda's Sustainable Development Goals. Aerogels, three-dimensional structures with high porosity and low density, offer promise in addressing this issue.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy.
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!