Extracellular adenosine triphosphate affects the maturation of human monocyte-derived dendritic cells (DCs), mainly by inhibiting T-helper 1 (Th1) cytokines, promoting Th2 cytokines, and modulating the expression of costimulatory molecules. In this study, we report that adenosine triphosphate (ATP) can induce immunosuppression through its action on DCs, defining a new role for extracellular nucleotides. Microarray analysis of ATP-stimulated human DCs revealed inter alia a drastic up-regulation of 2 genes encoding mediators involved in immunosuppression: thrombospondin-1 (TSP-1) and indoleamine 2,3-dioxygenase (IDO). The release of TSP-1 by DCs in response to ATP was confirmed at the protein level by enzyme-linked immunosorbent assay (ELISA), immunodetection, and mass spectrometry analysis, and has an antiproliferative effect on T CD4+ lymphocytes through TSP-1/CD47 interaction. Our pharmacologic data support the involvement of purinergic receptor P2Y11 in this ATP-mediated TSP-1 secretion. We demonstrate also that ATP significantly potentiates the up-regulation of IDO--a negative regulator of T lymphocyte proliferation--and kynurenine production initiated by interferon-gamma (IFN-gamma) in human DCs. Thus, extracellular ATP released from damaged cells and previously considered as a danger signal is also a potent regulator of mediators playing key roles in immune tolerance. Consequently, nucleotides' derivatives may be considered as useful tools for DC-based immunotherapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2005-05-1843 | DOI Listing |
Biochem Biophys Res Commun
July 2013
Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
The hemoprotein indoleamine 2,3-dioxygenase-1 (IDO1) is the first and rate-limiting enzyme in mammalian tryptophan metabolism. Interest in IDO1 continues to grow, due to the ever expanding influence IDO1 plays in the immune response. This study examined the contribution of all individual cysteine residues towards the overall catalytic properties and stability of recombinant human IDO1 via mutagenesis studies using a range of biochemical and spectroscopic techniques, including in vitro kinetic assessment, secondary structure identification via circular dichroism spectroscopy and thermal stability assessment.
View Article and Find Full Text PDFJ Interferon Cytokine Res
September 1996
Department of Biology, Indiana University, Bloomington, USA.
Indoleamine 2'3 dioxygenase (INDO), the rate-limiting enzyme in the catabolism of the essential amino acid L-tryptophan, is induced in many cell lines following interferon gamma (IFN-gamma) treatment. The induction of this enzyme has been associated with the antiparasitic and cytotoxic activities of human IFN-gamma. DNA analysis coupled to morphologic studies indicated that ME180 cells underwent apoptosis within 48 h of treatment with IFN-gamma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!