The source of anomalous radioactivity in the springs bordering the Sea of Galilee, Israel.

J Environ Radioact

Geological Survey of Israel, 30 Malkhe Yisrael Street, 95501 Jerusalem, Israel.

Published: March 2006

Situated within the Jordan Rift Valley, along the shores of Lake Kinneret (Sea of Galilee) which serves as the national water reservoir of Israel, are saline hot springs that are notable for their enrichment in radon and radium. Though the anomalous radioactivity has been known for almost half a century, the source of the radioactive anomalies has been a subject of conjecture. Radiometric analysis of a rock core drilled through Mt. Arbel, situated to the west of the lake, reveals that the oil shale sequence of the Senonian En Zetim and Ghareb formations is strikingly deficient in radium. Mt. Arbel has been cut by Rift Valley related faults that serve as conduits for ascending brines. The organic matter enriched sequence is encountered in the subsurface at elevations lower than the water level of the nearby radioactive enriched hot springs. It is thus concluded that hot ascending brines underlying the lake flush through the organic matter enriched sequence and remove a substantial percentage of 226Ra from the uranium enriched organic material, before draining to the outlets of the springs. Saline springs that are in contact with organic matter enriched sequence show excess of radium and radon, while fresh water springs in the same stratigraphic position show only excess of radon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2005.07.003DOI Listing

Publication Analysis

Top Keywords

organic matter
12
matter enriched
12
enriched sequence
12
anomalous radioactivity
8
sea galilee
8
rift valley
8
hot springs
8
ascending brines
8
springs
6
enriched
5

Similar Publications

Municipal waste classification is significant for effective recycling and waste management processes that involve the classification of diverse municipal waste materials such as paper, glass, plastic, and organic matter using diverse techniques. Yet, this municipal waste classification process faces several challenges, such as high computational complexity, more time consumption, and high variability in the appearance of waste caused by variations in color, type, and degradation level, which makes an inaccurate waste classification process. To overcome these challenges, this research proposes a novel Channel and Spatial Attention-Based Multiblock Convolutional Network for accurately classifying municipal waste that utilizes a unique attention mechanism for enhancing feature learning and waste classification accuracy.

View Article and Find Full Text PDF

Impact of Polystyrene Microplastics on Soil Properties, Microbial Diversity and L. Growth in Meadow Soils.

Plants (Basel)

January 2025

Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China.

The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities.

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Poly(amic acid)-Polyimide Copolymer Interfacial Layers for Self-Powered CHNHPbI Photovoltaic Photodiodes.

Polymers (Basel)

January 2025

Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul 01897, Republic of Korea.

Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CHNHPbI, MAPbI) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency () of 11.

View Article and Find Full Text PDF

Evaluating Different Supplements on the Growth Performance and Bioconversion Efficiency of Kitchen Waste by Black Soldier Fly Larvae.

Insects

December 2024

College of Agriculture and Biology, Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China.

Black soldier fly larvae (BSFL) convert kitchen waste into high-quality insect feed. However, the optimal amount of auxiliary materials needed to improve the physical and chemical properties of kitchen waste and enhance BSFL bioconversion efficiency remains unresolved. In this study, maize stover and BSFL frass were added to kitchen waste (in groups G2 and G3, respectively) to explore their effects on the growth performance and bioconversion efficiency of BSFL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!