Viral and cellular gene transcription in fibroblasts infected with small plaque mutants of varicella-zoster virus.

Antiviral Res

Department of Pediatrics, Stanford University, 300 Pasteur Drive, Rm G312, Stanford, CA, USA.

Published: November 2005

Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. In these experiments, cDNA corresponding to 69 VZV open reading frames was added to 42K human cDNA microarrays and used to examine viral as well as cellular gene transcription concurrently in fibroblasts infected with two genetically distinct small plaque VZV mutants, rOka/ORF63rev[T171] and rOkaDeltagI. rOka/ORF63rev[T171] has a point mutation in ORF63, which encodes the immediate early regulatory protein, IE63, and rOkaDeltagI has a deletion of ORF67, encoding glycoprotein I (gI). rOka/ORF63rev[T171] was deficient in the transcription of several viral genes compared to the recombinant rOka control virus. Deletion of ORF67 had minimal effects on viral gene transcription. Effects of rOka/ORF63rev[T171] and rOkaDeltagI on host cell gene transcription were similar to the rOka control, but a few host cell genes were regulated differently in rOkaDeltagI-infected cells. Infection of fibroblasts with intact or small plaque VZV mutants was associated with down-regulation of NF-kappaB and interferon responsive genes, down-regulation of TGF-beta responsive genes accompanied by reduced amounts of fibrotic/wound healing response genes (e.g. collagens, follistatin) and activation of cellular proliferation genes, and alteration of neuronal growth markers, as well as cellular genes encoding proteins important in protein and vesicle trafficking. These observations suggest that replication of VZV small plaque mutant viruses and intact VZV have similar consequences for host cell gene transcription in infected cells, and that the small plaque phenotype in these mutants reflects deficiencies in viral gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2005.06.011DOI Listing

Publication Analysis

Top Keywords

gene transcription
20
small plaque
20
host cell
12
cellular gene
8
fibroblasts infected
8
varicella-zoster virus
8
well cellular
8
plaque vzv
8
vzv mutants
8
roka/orf63rev[t171] rokadeltagi
8

Similar Publications

Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information.

View Article and Find Full Text PDF

Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus).

BMC Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.

View Article and Find Full Text PDF

Cell cycle dysregulation and the corresponding metabolic reprogramming play significant roles in tumor development and progression. CDK9, a kinase that regulates gene transcription and cell cycle, also induces oncogene transcription and abnormal cell cycle in AML cells. The function of CDK9 for gene regulation in AML cells requires further exploration.

View Article and Find Full Text PDF

Age-related muscle wasting, sarcopenia is an extensive loss of muscle mass and strength with age and a major cause of disability and accidents in the elderly. Mechanisms purported to be involved in muscle ageing and sarcopenia are numerous but poorly understood, necessitating deeper study. Hence, we employed high-throughput RNA sequencing to survey the global changes in protein-coding gene expression occurring in skeletal muscle with age.

View Article and Find Full Text PDF

N6-methyladenosine RNA modification regulates the transcription of SLC7A11 through KDM6B and GATA3 to modulate ferroptosis.

J Biomed Sci

January 2025

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.

Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!