Autonomic neuropathy and cardiovascular dysregulation are common complications of the diabetes mellitus (DM). The aim of the study was to test the hypothesis that cardiovascular regulation is abnormal in young patients with type 1 DM. Patients with type 1 DM (17, 10 females, 7 males) aged 12.9-31.5 years (mean+/-SEM: 22.4+/-1.0 years) were investigated. The mean duration of DM was 12.4+/-1.2 years. The control group consisted of 17 healthy probands matched for sex and age. The length of R-R intervals was measured using telemetric system (VariaCardio TF4; Sima Media) where ECG signal (sampling frequency 1000 Hz) from thoracic belt was transferred into PC for further analysis. Systolic blood pressure (SBP) was monitored beat-to-beat using volume-clamp method by Finapres 2300 (Ohmeda). Spectral power in HF band of HRV (HRV-HF) was taken as an index of parasympathetic control and spectral power in LF band of systolic BPV (BPV-LF) as an index of sympathetic control. In young patients with type 1 DM significant reduction of spectral power in HF band of the heart rate variability was found, whereas no significant difference between DM group and control group was observed in spectral power in LF band of blood pressure variability. In conclusion, we found impaired parasympathetic control of heart rate in young patients with type 1 DM. No differences in blood vessels sympathetic control were detected using spectral analysis of BPV. We suggest that abnormalities in cardiac parasympathetic regulation precede impairment of blood vessels sympathetic control in young diabetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1475-097X.2005.00623.x | DOI Listing |
J Magn Reson Imaging
January 2025
Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China.
Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.
Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.
Lymphology
January 2024
Vascular Medicine Unit, Cholet Hospital, Cholet, France.
Access to trained lymphedema care providers remains limited making patient-driven management solutions essential. One such option, sequential intermittent pneumatic compression (IPC), has gained traction as a supportive tool for lymphedema management. While newer IPC devices and innovative applications are being introduced to the market, questions regarding the safety and efficacy of this technology persist.
View Article and Find Full Text PDFFuture Cardiol
January 2025
Echocardiography research Center, Rajaie cardiovascular medical and research Center, Iran University of Medical Science, Tehran, Iran.
Introduction: Decreased left atrial appendage emptying velocity (LAAV) is a marker for thrombus formation. This study evaluates the association between LAAV and inflammatory indices in non-valvular atrial fibrillation (AF) patients.
Methods: The study population was 1428 patients with AF, 875 of whom enrolled.
Asian Pac J Cancer Prev
January 2025
Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
Objective: Oxidative stress prompts breast cancer cells to adapt by raising the lethal threshold and enhancing the antioxidant mechanism, thereby enabling survival and continuous proliferation that facilitates tumor progression. Nrf2 and 8-OHdG are indicative of oxidative stress activity and impact the progression of breast cancer. We aimed to analyze the expression of Nrf2 and 8-OHdG in various T stages of breast cancer in our hospital.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.
Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!