The epsilon4 allele of the apolipoprotein E gene (APOE4) has been consistently associated with a greater risk of Alzheimer's disease (AD) as well as an earlier onset of AD. It is possible that APOE4 may also play a role in the etiology of other neurodegenerative disorders, such as Parkinson's disease (PD). APOE genotype, age of onset, disease duration, smoking history, and dementia status were collected for families with PD, yielding 324 Caucasian families with complete information. Logistic regression employing one individual per family and including age of onset and disease duration as covariates demonstrated a significantly increased risk of dementia for those individuals having inherited at least one epsilon4 allele (OR=3.37; P=0.002). Survival analyses also demonstrated a significantly earlier age of onset for those subjects with at least one epsilon4 allele (59.7 years) as compared with those homozygous for the more common epsilon3 allele (62.4 years; P=0.009). Thus, consistent with previous studies, we find evidence that the presence of an epsilon4 allele results in significantly earlier onset of PD and a greater likelihood of dementia. It appears the similarities between PD and AD may be due to an overlap in the diseases' genetic etiology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.20663DOI Listing

Publication Analysis

Top Keywords

epsilon4 allele
16
earlier onset
12
age onset
12
allele earlier
8
parkinson's disease
8
risk dementia
8
onset disease
8
disease duration
8
allele
6
onset
6

Similar Publications

Amyotrophic Lateral Sclerosis(ALS) has traditionally been managed as a neuromuscular disorder. However, recent evidence suggests involvement of non-motor domains. This study aims to evaluate the impact of APOE and MAPT genotypes on the cognitive features of ALS.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMH) are commonly observed on MRI in Alzheimer's disease (AD), but the molecular pathways underlying their relationships with the ATN biomarkers remain unclear. The aim of this study was to identify genetic variants that may modify the relationship between WMH and the ATN biomarkers.

Method: This genome-wide interaction study (GWIS) included individuals with AD, MCI, and normal cognition from ADNI (n = 1012).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Cleveland Clinic, Cleveland, OH, USA.

Background: Apolipoprotein E (ApoE) is the primary cholesterol and lipid transporting apolipoprotein in the central nervous system (CNS) and is the greatest genetic risk factor for Alzheimer's Disease (AD). There are three main isoforms differing by single amino acid changes: ε3 is "neutral", ε4 is "risk" (Cys112Arg), and ε2 is "resilience" (Arg158Cys). Rare forms (Christchurch, Jacksonville) have also been proposed as resilience alleles, while an ε4-like allele (with Arg61Thr) is present in non-human primates without AD risk.

View Article and Find Full Text PDF

Background: The Apolipoprotein E ε4 (APOE-ε4) allele is common in the population, but acts as the strongest genetic risk factor for late-onset Alzheimer's disease (AD). Despite the strength of the association, there is notable heterogeneity in the population including a strong modifying effect of genetic ancestry, with the APOE-ε4 allele showing a stronger association among individuals of European ancestry (EUR) compared to individuals of African ancestry (AFR). Given this heterogeneity, we sought to identify genetic modifiers of APOE-ε4 related to cognitive decline leveraging APOE-ε4 stratified and interaction genome-wide association analyses (GWAS).

View Article and Find Full Text PDF

Background: Mitochondria are organelles where energy production takes place via oxidative phosphorylation, thus mitochondrial function influences the organs with large energy consumption, such as the brain. Mitochondria contain their own circular genome (mtDNA), which encodes essential proteins/RNAs involved in oxidative phosphorylation. The maternal inheritance of mtDNA, combined with a higher risk of Alzheimer's disease (AD) observed in females, suggest mtDNA may have a role in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!