Although radiation can directly induce DNA damage and is a known human and animal carcinogen, the number of genetic changes in radiation-induced tumors, and the pathways responsible for generating them, are unknown. We have used high-density BAC arrays covering >95% of the mouse genome for analysis of genomic patterns of aberrations in spontaneous and radiation-induced mouse lymphomas. The majority of radiation-induced tumors exhibit one of three 'signatures' based on gene copy number changes. Some exhibit extensive scrambling of the genome, with very high numbers of recurrent gains and losses. Two other signatures are characterized by excess gains but relatively few losses, or vice versa. Changes in spontaneous tumors often involve whole chromosomes, whereas radiation-induced tumors exhibit a high frequency of localized deletion/amplification events. The number of copy number abnormalities does not correlate with the latency or pathology of the tumors. We propose that specific early events following radiation exposure induce changes in 'caretaker' genes that control specific downstream pathways involved in DNA damage repair. The nature of these early events may determine the overall genomic signature observed in the resulting tumor.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1208926DOI Listing

Publication Analysis

Top Keywords

radiation-induced tumors
12
radiation-induced mouse
8
dna damage
8
tumors exhibit
8
copy number
8
gains losses
8
early events
8
radiation-induced
5
tumors
5
genomic instability
4

Similar Publications

Communicating hydrocephalus following stereotactic radiosurgery for periventricular meningiomas: illustrative cases.

J Neurosurg Case Lessons

January 2025

Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom.

Background: Stereotactic radiosurgery (SRS) is a well-established option for the management of intracranial tumors, including meningiomas. Although valued for its low invasiveness and precision, it still carries a risk of complications. Communicating hydrocephalus is a serious, albeit rarely reported, complication of SRS.

View Article and Find Full Text PDF

PurposeThe concept of dual-state hyper-energy metabolism characterized by elevated glycolysis and OxPhos has gained considerable attention during tumor growth and metastasis in different malignancies. However, it is largely unknown how such metabolic phenotypes influence the radiation response in aggressive cancers. Therefore, the present study aimed to investigate the impact of hyper-energy metabolism (increased glycolysis and OxPhos) on the radiation response of a human glioma cell line.

View Article and Find Full Text PDF

The interplay between RNA m6A modification and radiation biology of cancerous and non-cancerous tissues: a narrative review.

Cancer Biol Med

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.

The diverse radiation types in medical treatments and the natural environment elicit complex biological effects on both cancerous and non-cancerous tissues. Radiation therapy (RT) induces oncological responses, from molecular to phenotypic alterations, while simultaneously exerting toxic effects on healthy tissue. N-methyladenosine (mA), a prevalent modification on coding and non-coding RNAs, is a key epigenetic mark established by a set of evolutionarily conserved enzymes.

View Article and Find Full Text PDF

Purpose: Radiation Therapy (RT) can modulate the immune system and generate anti-tumor T cells. However, this anti-tumor-activity is countered by radiation-induced immunosuppression (RIIS). Clinical advantages of proactively sparing RT dose to immune rich organs have not previously been evaluated.

View Article and Find Full Text PDF

The Proimmunomodulatory and Anti-immunomodulatory Effects of Radiotherapy in Oncologic Care.

Hematol Oncol Clin North Am

January 2025

Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA. Electronic address:

The abscopal effect in radiotherapy (RT) refers to the phenomenon where localized radiation treatment causes regression of distant, nonirradiated tumors. Although rare, recent research shows that combining radiation with immunotherapies, such as immune checkpoint inhibitors, can enhance this effect. The interaction between radiation-induced cell death, immune responses, and the tumor microenvironment manifests in competing biologic mechanisms resulting in complex immunologic outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!