Ultraviolet B light (UVB) causes cutaneous inflammation and cell death, but the agents responsible are not defined. These studies examined the role of the platelet-activating factor (PAF) signaling system in UVB-mediated effects. Expression of the PAF receptor in the PAF receptor-negative epidermoid cell line KB augmented apoptosis in response to UVB irradiation. Overexpression of the PAF receptor in primary human keratinocytes also enhanced UVB-mediated apoptosis in vitro, and it enhanced apoptosis in an in vivo model of human keratinocytes grafted onto severe combined immune-deficient (SCID) mice. To define the mechanism by which UVB activates the PAF receptor, we used mass spectrometry to demonstrate significant amounts of the C4 PAF analogs 1-alkyl-2-(butanoyl and butenoyl)-sn-glycero-3-phosphocholine, as well as native PAF in an epidermal cell line after UVB irradiation. Supplementing the cells with the precursor phospholipid 1-hexadecyl-2-arachidonoyl-sn-glycero-3-phosphocholine (HAPC) increased the amount of C4 PAF analogs recovered after UVB exposure. We irradiated HAPC directly and found, even in the absence of a photosensitizer, fragmentation to C4-PAF receptor ligands. We conclude UVB photo-oxidizes cellular phospholipids, creating PAF analogs that stimulate the PAF receptor to induce further PAF synthesis and apoptosis. PAF signaling may participate in the cutaneous inflammation that occurs during photo-aggravated dermatoses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M503811200 | DOI Listing |
Int J Mol Sci
November 2024
Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
Chronic spontaneous urticaria (CSU) is a debilitating condition characterized by mast cell activation. Platelet-activating factor (PAF) is produced by various immune cells, including mast cells, basophils, lymphocytes, and eosinophils, which play crucial roles in CSU pathogenesis. It induces mast cell degranulation, increases vascular permeability, and promotes the chemotaxis of inflammatory cells.
View Article and Find Full Text PDFBreast Cancer Res Treat
November 2024
Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany.
Cureus
October 2024
Pediatric Emergency Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK.
Obesity is a significant barrier to renal transplantation due to associated surgical risks and postoperative complications. This case series presents five cases of obese patients with end-stage renal disease (ESRD) who successfully achieved substantial weight loss using semaglutide, a glucagon-like peptide (GLP) type-1 receptor agonist, thereby becoming eligible for transplantation. Each patient experienced significant weight reduction, ranging from 11.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
September 2024
Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
Since 2000s, we have outlined the multifaceted role of inflammation in several aspects of cancer, via specific inflammatory mediators, including the platelet activating factor (PAF) and PAF-receptor (PAFR) related signaling, which affect important inflammatory junctions and cellular interactions that are associated with tumor-related inflammatory manifestations. It is now well established that disease-related unresolved chronic inflammatory responses can promote carcinogenesis. At the same time, tumors themselves are able to promote their progression and metastasis, by triggering an inflammation-related vicious cycle, in which PAF and its signaling play crucial role(s), which usually conclude in tumor growth and angiogenesis.
View Article and Find Full Text PDFJ Neurochem
October 2024
Bernal Institute, University of Limerick, Limerick, Ireland.
Astrocytes are important regulators of neuronal development and activity. Their activation plays a key role in the response to many central nervous system (CNS) pathologies. However, reactive astrocytes are a double-edged sword as their chronic or excessive activation may negatively impact CNS physiology, for example, via abnormal modulation of synaptogenesis and synapse function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!