Diet-dependent survival of protein repair-deficient mice.

J Nutr Biochem

Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.

Published: September 2005

Protein L-isoaspartyl (D-aspartyl) O-methyltransferase (PCMT1) is a protein-repair enzyme, and mice lacking this enzyme accumulate damaged proteins in multiple tissues, die at an early age from progressive epilepsy and have an increased S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy) ratio in brain tissue. It has been proposed that the alteration of AdoMet and AdoHcy levels might contribute to the seizure phenotype, particularly as AdoHcy has anticonvulsant properties. To investigate whether altered AdoMet and AdoHcy levels might contribute to the seizures and thus the survivability of the repair-deficient mice, a folate-deficient amino acid-based diet was administered to the mice in place of a standard chow diet. We found that the low-folate diet significantly decreases the AdoMet/AdoHcy ratio in brain tissue and results in an almost threefold extension of mean life span in the protein repair-deficient mice. These results indicate that the increased AdoMet/AdoHcy ratio may contribute to the lowered seizure threshold in young PCMT1-deficient mice. However, mean survival was also extended almost twofold for mice on a control folate-replete amino acid-based diet compared to mice on the standard chow diet. Survival after 40 days was similar in the mice on the low- and high-folate amino acid-based diets, suggesting that the survival of older PCMT1-deficient mice is not affected by the higher brain AdoMet/AdoHcy ratio. Additionally, the surviving older repair-deficient mice have a significant increase in body weight when compared to age-matched normal mice, independent of the type of diet. This weight increase was not accompanied by an increase in consumption levels, indicating that the repair-deficient mice may also have an altered metabolic state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2005.02.004DOI Listing

Publication Analysis

Top Keywords

repair-deficient mice
20
mice
13
amino acid-based
12
adomet/adohcy ratio
12
protein repair-deficient
8
ratio brain
8
brain tissue
8
adomet adohcy
8
adohcy levels
8
levels contribute
8

Similar Publications

Background: Poly (ADP-Ribose) polymerase inhibitors are approved for treatment of tumors with BRCA1/2 and other homologous recombination repair (HRR) mutations. However, clinical responses are often not durable and treatment may be detrimental in advanced cancer due to excessive toxicities. Thus we are seeking alternative therapeutics to enhance PARP-directed outcomes.

View Article and Find Full Text PDF

Alzheimer disease is a neurodegenerative pathology-modifying mitochondrial metabolism with energy impairments where the effects of biological sex and DNA repair deficiencies are unclear. We investigated the therapeutic potential of dietary ketosis alone or with supplemental nicotinamide riboside (NR) on hippocampal intermediary metabolism and mitochondrial bioenergetics in older male and female wild-type (Wt) and 3xTgAD-DNA polymerase-β-deficient (3xTg/POLβ) (AD) mice. DNA polymerase-β is a key enzyme in DNA base excision repair (BER) of oxidative damage that may also contribute to mitochondrial DNA repair.

View Article and Find Full Text PDF
Article Synopsis
  • Acquired resistance to temozolomide (TMZ) in glioblastoma patients, particularly those with DNA mismatch repair deficiencies, limits treatment effectiveness, prompting research into the new drug KL-50, which targets cancer cells in an MMR-independent manner.
  • In studies, KL-50 significantly improved the median survival of mice with both naive and post-TMZ glioblastoma xenografts, showcasing its potential as a superior treatment option.
  • Results indicate KL-50 may be particularly effective in MGMT and MMR-deficient tumors, offering hope for better management of recurrent glioblastoma after initial TMZ therapy.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the surrounding DNA sequence affects the repair of double-stranded breaks caused by CRISPR/Cas9, using various genetically modified mouse embryonic stem cell lines.
  • Researchers analyzed over 236,000 mutation outcomes from 2800 synthetic DNA sequences, discovering specific roles of DNA repair proteins like Prkdc and Polm in generating small insertions and deletions.
  • They developed predictive models for these mutational outcomes based on their findings, enhancing the understanding of DNA repair mechanisms and enabling more accurate control of CRISPR-induced mutations.
View Article and Find Full Text PDF

Carcinogenesis results from the sequential acquisition of oncogenic mutations that convert normal cells into invasive, metastasizing cancer cells. Colorectal cancer exemplifies this process through its well-described adenoma-carcinoma sequence, modeled previously using clustered regularly interspaced short palindromic repeats (CRISPR) to induce four consecutive mutations in wild-type human gut organoids. Here, we demonstrate that long-term culture of mismatch-repair-deficient organoids allows the selection of spontaneous oncogenic mutations through the sequential withdrawal of Wnt agonists, epidermal growth factor (EGF) agonists and the bone morphogenetic protein (BMP) antagonist Noggin, while TP53 mutations were selected through the addition of Nutlin-3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!