Modification of skin composition by conjugated linoleic acid alone or with combination of other fatty acids in mice.

Br J Nutr

Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.

Published: August 2005

The effects of conjugated linoleic acid (CLA), gamma-linolenic acid (GLA), linoleic acid (LA), and their combinations, on skin composition in mice were investigated. Mice (8 weeks old) were orally administered with either LA, GLA, CLA, LA + GLA, LA + CLA, or CLA + GLA for 4 weeks. Then, the skin was analysed for triacylglycerol content, fatty acid composition and collagen content. Additionally, thicknesses of the dermis layer and subcutaneous tissue layer, and the size and number of adipocytes were measured histologically. The skin fatty acid composition was modified depending upon the fatty acid composition of supplemented oils. In each oil-alone group, skin triacylglycerol content was the highest in LA, followed by GLA and CLA treatments. Combinations with CLA had a similar triacylglycerol content compared with the CLA-alone group. No significant changes in collagen content were observed among any treatments. The effects on subcutaneous thickness were similar to the results obtained in the triacylglycerol contents, where groups supplemented with CLA alone or other fatty acids had significantly thinner subcutaneous tissue compared with the LA-alone group. However, no significant difference was detected in the thickness of the dermis layers. The number of adipocytes was highest in the LA + GLA group and tended to be reduced by CLA with or without the other fatty acids. These results suggest that CLA alone or in combination with other fatty acids strongly modifies skin composition in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1079/bjn20051488DOI Listing

Publication Analysis

Top Keywords

fatty acids
16
skin composition
12
linoleic acid
12
gla cla
12
triacylglycerol content
12
fatty acid
12
acid composition
12
cla
9
conjugated linoleic
8
combination fatty
8

Similar Publications

In the present study, the nematicidal and fungicidal activity of the biosurfactant (BS) produced by the strain Serratia ureilytica UTS was evaluated. The highest mortality of J2 juveniles of the nematode Nacobbus aberrans was 92.3% at a concentration of 30 mg/mL.

View Article and Find Full Text PDF

The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA, USA.

Background: Brain accumulation of amyloid-ß (Aß) in plaques and neurons is the cause of AD neuropathology that is opposed by autologous monocyte/macrophages (MMs) in health but this defense fails in AD.

Method: RNAseq, immunochemistry of the brain, immunofluorescence, and confocal microscopy of macrophages.

Result: In the AD brain, MMs shuttle Aß from parenchyma to vessels, which develop vasculitis, causing amyloid-related imaging abnormalities (ARIAs).

View Article and Find Full Text PDF

Background: Emerging studies have identified changes in lipid processing in Alzheimer's disease patients. However, how the various brain cell types respond to these changes is unclear. Multiple Alzheimer's disease risk genes are expressed in microglia and involved in lipid sensing and processing.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) risk and progression are significantly influenced by ApoE genotypes, with ApoE4 increasing and ApoE2 decreasing the susceptibility compared to ApoE3. Understanding metabolic pathways affected by ApoE genotypes will help decipher disease development and identify new therapeutic targets.

Method: This study investigates the impact of ApoE genotypes on aging brain metabolic trajectories using human ApoE-targeted replacement mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!