Background: Availability of a range of techniques and devices allow measurement of many variables related to the stiffness of large or medium sized arteries. There is good evidence that, pulse wave velocity is a relatively simple measurement and is a good indicator of changes in arterial properties. The pulse wave velocity calculated from pulse wave recording by other methods like doppler or tonometry is tedious, time-consuming and above all their reproducibility depends on the operator skills. It requires intensive resource involvement. For epidemiological studies these methods are not suitable. The aim of our study was to clinically evaluate the validity and reproducibility of a new automatic device for measurement of pulse wave velocity that can be used in such studies.

Methods: In 44 subjects including normal healthy control and patients with coronary artery disease, heart brachial, heart ankle, brachial ankle and carotid femoral pulse wave velocities were recorded by using a new oscillometric device. Lead I and II electrocardiogram and pressure curves were simultaneously recorded. Two observers recorded the pulse wave velocity for validation and one observer recorded the velocity on two occasions for reproducibility.

Results And Discussion: Pulse wave velocity and arterial stiffness index were recorded in 24 control and 20 coronary artery disease patients. All the velocities were significantly high in coronary artery disease patients. There was highly significant correlation between the values noted by the two observers with low standard deviation. The Pearson's correlation coefficient for various velocities ranged from (r = 0.88-0.90) with (p < 0.0001). The reproducibility was also very good as shown by Bland-Altman plot; most of the values were lying within 2 SD. The interperiod measurements of pulse wave velocity were also significantly correlated (r = 0.71-0.98) (P < 0.0001). Carotid-femoral pulse wave velocity was found to correlate significantly with heart brachial, heart ankle, brachial ankle pulse wave velocity and arterial stiffness index values. Reproducibility of our method was good with very low variability in both interobserver and interperiod analysis.

Conclusion: The new device "PeriScope" based on oscillometric technique has been found to be a simple, non-invasive and reproducible device for the assessment of pulse wave velocity and can be used to determine arterial stiffness in large population based studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224857PMC
http://dx.doi.org/10.1186/1475-925X-4-49DOI Listing

Publication Analysis

Top Keywords

pulse wave
48
wave velocity
40
pulse
12
wave
12
coronary artery
12
artery disease
12
arterial stiffness
12
velocity
11
validity reproducibility
8
oscillometric technique
8

Similar Publications

Background: Obesity and metabolic syndrome (MS) accelerate arterial stiffening, increasing cardiovascular (CV) risk after transplant. BMI is limited by inability to differentiate muscle, fat mass, and fat distribution patterns. The aim of this study was to identify the best anthropometric measure to detect arterial stiffness as assessed by pulse wave velocity (PWV) in a racially diverse pediatric transplant population.

View Article and Find Full Text PDF

Multimodal imaging of murine cerebrovascular dynamics induced by transcranial pulse stimulation.

Alzheimers Dement

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.

Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.

View Article and Find Full Text PDF

Parameter-Tuned Pulsed Wave Photobiomodulation Enhances Stem Cells From Apical Papilla Differentiation: Evidence From Gene and Protein Analyses.

J Biophotonics

January 2025

Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.

This study examines the effects of pulsed wave photobiomodulation (pwPBM) on the osteogenic differentiation of stem cells from the apical papilla (SCAP). Using 810 nm near-infrared (NIR) light with 300 Hz pulses and a 30% duty cycle, pwPBM was applied at a total energy density of 750 mJ/cm. Osteogenesis was evaluated through both in vitro and in vivo analyses.

View Article and Find Full Text PDF

Introduction: Approximately two-thirds of Brazilian older adults have hypertension. Aerobic training is the first-line non-pharmacological therapy for hypertension. However, the effects of different aerobic training approaches on ambulatory blood pressure in older adults are uncertain.

View Article and Find Full Text PDF

Hanbury-Brown and Twiss (HBT) effect is the foundation for stellar intensity interferometry. However, it is a phase insensitive two-photon interference effect. Here we extend the HBT interferometer by mixing intensity-matched reference fields with the input fields before intensity correlation measurement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!