New neurons are produced continually in the dentate gyrus of the hippocampus. Numerous factors modulate the rate of neuron production. One of the most important is the adrenal-derived corticoids. Raised levels of corticoids suppress proliferation of progenitor cells, while removal of corticoids by adrenalectomy reverses this. The exact mechanisms by which corticoids mediate such regulation are unknown, but corticoids are believed to act through the receptors for mineralocorticoids (MR) and glucocorticoids (GR). Previous reports regarding the roles of these receptors in regulating cell proliferation came to contrasting conclusions. Here we use both agonists and antagonists to these receptors in adult male rats to investigate and clarify their roles. Blockade of MR with spironolactone in adrenalectomised male rats implanted with a corticosterone pellet to reproduce basal levels enhanced proliferation, whereas treatment with the GR antagonist mifepristone had no effect. However, mifepristone reversed the suppressive effect of additional corticosterone in intact rats. Both aldosterone and RU362, agonists of MR and GR, respectively, reduced proliferation in adrenalectomised rats, and combined treatment with both agonists had an additional suppressive action. These results clearly show that occupancies of both receptors act in the same direction on progenitor proliferation. The existence of two receptors with different affinities for corticoids may ensure that proliferation of progenitor cells in the adult dentate gyrus is regulated across the range of adrenal corticoid activity, including both basal and stressful contexts. Although a small proportion of newly formed cells may express GR and MR, corticosterone probably regulates proliferation indirectly through other local cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592225PMC
http://dx.doi.org/10.1111/j.1460-9568.2005.04277.xDOI Listing

Publication Analysis

Top Keywords

proliferation
8
progenitor proliferation
8
dentate gyrus
8
proliferation progenitor
8
progenitor cells
8
male rats
8
receptors
6
corticoids
6
roles mineralocorticoid
4
mineralocorticoid glucocorticoid
4

Similar Publications

Mural cells are essential for maintaining the proper functions of microvasculatures. However, a key challenge of microvascular tissue engineering is identifying a cellular source for mural cells. We showed that , circulating fibrocytes (CFs) can (1) shear and stabilize the microvasculatures formed by vascular endothelial cells (VECs) in a collagen gel, (2) form gap junctions with VECs and (3) induce basement membrane formation.

View Article and Find Full Text PDF

Nuclear factor I-C regulates intramembranous bone formation via control of FGF signalling.

Heliyon

January 2025

Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.

Our previous studies indicate that NFI-C is essential for tooth root development and endochondral ossification. However, its exact role in calvarial intramembranous bone formation remains unclear. In this study, we demonstrate that the disruption of the gene leads to defects in intramembranous bone formation, characterized by decreased osteogenic proliferative activity and reduced osteoblast differentiation during postnatal osteogenesis.

View Article and Find Full Text PDF

Dynamic Coupling of MAPK Signaling to the Guanine Nucleotide Exchange Factor GEF-H1.

Onco Targets Ther

January 2025

Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada.

The gene is nearly ubiquitously subjected to activating mutation in pancreatic adenocarcinomas (PDAC), occurring at a frequency of over 90% in tumors. Mutant KRAS drives sustained signaling through the MAPK pathway to affect frequently disrupted cancer phenotypes including transcription, proliferation and cell survival. Recent research has shown that PDAC tumor growth and survival required a guanine nucleotide exchange factor for RAS homolog family member A (RhoA) called GEF-H1.

View Article and Find Full Text PDF

Adipokines in Breast Cancer: Decoding Genetic and Proteomic Mechanisms Underlying Migration, Invasion, and Proliferation.

Breast Cancer (Dove Med Press)

January 2025

Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine - ETHIANUM, Heidelberg, 69115, Germany.

Background: Adipokines, bioactive peptides secreted by adipose tissue, appear to contribute to breast cancer development and progression. While numerous studies suggest their role in promoting tumor growth, the exact mechanisms of their involvement are not yet completely understood.

Methods: In this project, varying concentrations of recombinant human adipokines (Leptin, Lipocalin-2, PAI-1, and Resistin) were used to study their effects on four selected breast cancer cell lines (EVSA-T, MCF-7, MDA-MB-231, and SK-Br-3).

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a complex etiology primarily linked to abnormalities in B lymphocytes within the human body, resulting in the production of numerous pathogenic autoantibodies. Telitacicept is a relatively novel humanized, recombinant transmembrane activator, calcium modulator and cyclophilin ligand interactor fused with the Fc portion (TACI-Fc). It works by competitively inhibiting the TACI site, neutralizing the activity of B-cell lymphocyte stimulator and A proliferation-inducing ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!