Transection, lesion and unit recording studies have localized rapid eye movement (REM) sleep mechanisms to the pons. Recent work has emphasized the role of pontine cholinergic cells, especially those of the pedunculopontine tegmentum (PPT). The present study differentiated REM sleep deficits associated with lesions of the PPT from other pontine regions implicated in REM sleep generation, including those with predominantly cholinergic vs non-cholinergic cells. Twelve hour polygraphic recordings were obtained in 18 cats before and 1-2 weeks after bilateral electrolytic or radio frequency lesions of either: (1) PPT, which contains the dorsolateral pontine cholinergic cell column; (2) laterodorsal tegmental nucleus (LDT), which contains the dorsomedial pontine cholinergic cell column; (3) locus ceruleus (LC), which contains mostly noradrenergic cells; or (4) subceruleus (LC alpha, peri-LC alpha and the lateral tegmental field), which also contains predominantly noncholinergic cells. There were three main findings: (i) Only lesions of PPT and subceruleus significantly affected REM sleep time. These lesions produced comparable reductions in REM sleep time but influenced REM sleep components quite differently: (ii) PPT lesions, estimated to damage 90 +/- 4% of cholinergic cells, reduced the number of REM sleep entrances and phasic events, including ponto-geniculooccipital (PGO) spikes and rapid eye movements (REMs), but did not prevent complete atonia during REM sleep: (iii) Subceruleus lesions eliminated atonia during REM sleep. Mobility appeared to arouse the cat prematurely from REM sleep and may explain the brief duration of REM sleep epochs seen exclusively in this group. Despite the reduced amount of REM sleep, the total number of PGO spikes and REM sleep entrances increased over baseline values. Collectively, the results distinguish pontine loci regulating phasic events vs atonia. PPT lesions reduced phasic events, whereas subceruleus lesions created REM sleep without atonia. Severe REM sleep deficits after large pontine lesions, including PPT and subceruleus, might be explained by simultaneous production of both REM sleep syndromes. However, extensive loss of ACh neurons in the PPT does not disrupt REM sleep atonia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110272 | PMC |
http://dx.doi.org/10.1016/0006-8993(92)90508-7 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
National Institute of Biological Sciences, Beijing 102206, China.
Sleep need accumulates during waking and dissipates during sleep to maintain sleep homeostasis (process S). Besides the regulation of daily (baseline) sleep amount, homeostatic sleep regulation commonly refers to the universal phenomenon that sleep deprivation (SD) causes an increase of sleep need, hence, the amount and intensity of subsequent recovery sleep. The central regulators and signaling pathways that govern the baseline and homeostatic sleep regulations in mammals remain unclear.
View Article and Find Full Text PDFSleep Breath
January 2025
Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
Purpose: The expression of the respiratory events in OSA is influenced by different mechanisms. In particular, REM sleep can highly increase the occurrence of events in a subset of OSA patients, a condition dubbed REM-OSA (often defined as an AHI 2 times higher in REM than NREM sleep). However, a proper characterization of REM-OSA and its pathological sequelae is still inadequate, partly because of limitations in the current definitions.
View Article and Find Full Text PDFRes Sports Med
January 2025
School of Health and Kinesiology, University of Nebraska Omaha, Omaha, USA.
Chronic Ankle Instability (CAI) is a condition characterized by giving-way episodes, instability and recurrent ankle sprains. Poor sleep can increase the risk of musculoskeletal injury and sleep is known to be an important aspect of injury recovery. However, the effect sleep has on those with CAI as well as its risk for recurrent episodes of giving-way remains unclear.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA.
Objective: Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) result from under- and overexpression of MECP2, respectively. Preclinical studies using genetic-based treatment showed robust phenotype recovery for both MDS and RTT. However, there is a risk of converting MDS to RTT, or vice versa, if accurate MeCP2 levels are not achieved.
View Article and Find Full Text PDFSleep Breath
January 2025
Soroka Medical Center, Yitzhack I. Rager Blvd. 151, Be'er Sheva, Israel.
Purpose: This study aimed to validate the new DormoTech Vlab device's performance, usability, and validity as a sleep test and physiological data recorder. The novel device has been designed for patient comfort, ease of use, and home-based assessment of sleep disordered breathing and other sleep-related measurements.
Methods: Forty-seven adults (mean age = 52 years, 42% female, body mass index 29.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!