The 14-3-3 proteins are a family of regulatory signaling molecules that interact with other proteins in a phosphorylation-dependent manner. 14-3-3 proteins are thought to play a direct role in the regulation of subcellular localization of FoxO forkhead transcription factors. It has been suggested that the interaction with the 14-3-3 protein affects FoxO binding to the target DNA and interferes with the function of nuclear localization sequence (NLS). Masking or obscuring of NLS could inhibit interaction between FoxO factors and nuclear importing machinery and thus shift the equilibrium of FoxO localization toward the cytoplasm. According to our best knowledge, there is no experimental evidence showing a direct interaction between the 14-3-3 protein and NLS of FoxO. Therefore, the main goal of this work was to investigate whether the phosphorylation by protein kinase B, the 14-3-3 protein, and DNA binding affect the structure of FoxO4 NLS. We have used site-directed labeling of FoxO4 NLS with the extrinsic fluorophore 1,5-IAEDANS in conjunction with steady-state and time-resolved fluorescence spectroscopy to study conformational changes of FoxO4 NLS in vitro. Our data show that the 14-3-3 protein binding significantly changes the environment around AEDANS-labeled NLS and reduces its flexibility. On the other hand, the phosphorylation itself and the binding of double-stranded DNA have a small effect on the structure of this region. Our results also suggest that the DNA-binding domain of FoxO4 remains relatively mobile while bound to the 14-3-3 protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi050618r | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFBiomolecules
December 2024
Unit of Medical and Dental Sciences, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
Prion diseases, including Creutzfeldt-Jakob disease (CJD), are deadly neurodegenerative disorders characterized by the buildup of abnormal prion proteins in the brain. This accumulation disrupts neuronal functions, leading to the rapid onset of psychiatric symptoms, ataxia, and cognitive decline. The urgency of timely diagnosis for effective treatment necessitates the identification of strongly correlated biomarkers in bodily fluids, which makes our research crucial.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China.
Plants activate defense machinery when infested by herbivorous insects but avoid such costs in the absence of herbivory. However, the key signaling pathway regulators underlying such flexibility and the mechanisms that insects exploit these components to disarm plant defense systems remain elusive. Here, it is reported that immune repressor 14-3-3e in rice Oryza sativa (OsGF14e) regulates immune homeostasis.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Academy of Agricultural and Forestry Sciences of Qinghai University, Xining 810016, China.
The determinate inflorescence trait of L. is associated with various desirable agricultural characteristics. ( and ), which encode the transcription factor have previously been identified as candidate genes controlling this trait through map-based cloning.
View Article and Find Full Text PDFChem Sci
January 2025
Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
Disordered proteins and domains are ubiquitous throughout the proteome of human cell types, yet the biomolecular sciences lack effective tool compounds and chemical strategies to study this class of proteins. In this context, we introduce a novel covalent tool compound approach that combines proximity-enhanced crosslinking with histidine trapping. Utilizing a maleimide-cyclohexenone crosslinker for efficient cysteine-histidine crosslinking, we elucidated the mechanism of this dual-reactive tool compound class.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!