Stimulative and sedative effects of essential oils upon inhalation in mice.

Arch Pharm Res

R&D Center, Hanbul Cosmetics Co. Ltd., 72-7 Yongsung-ri, Samsung-Myun, Chungbuk 369-830, Korea.

Published: July 2005

This study investigated the stimulative or sedative effects of inhaling fragrant essential oils (EOs) by using a forced swimming test (FST) with mice. This behavioral test is commonly used to measure the effects of antidepressant drugs. The inhalation by mice of EOs, such as ginger oil (p<0.05), thyme oil (p<0.05), peppermint oil (p<0.05), and cypress oil (p<0.01) resulted in 5% to 22% reduction of immobility. The same results were achieved when over-agitation was artificially induced in the mice by an intraperitoneal injection of caffeine (a psycho-stimulant). In contrast, inhalation of some EOs by the mice resulted in increased immobility. To evaluate more correctly the sedative effects of EOs, the immobility of over-agitated mice induced with caffeine was ascertained after the inhalation of various EOs. Inhalation of lavender oil (p<0.01) and hyssop oil (p<0.01) increased the immobile state in mice that were treated with caffeine. The results of this study indicate that the inhalation of essential oils may induce stimulative or sedative effects in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02977341DOI Listing

Publication Analysis

Top Keywords

stimulative sedative
8
sedative effects
8
essential oils
8
inhalation mice
8
effects essential
4
oils inhalation
4
mice study
4
study investigated
4
investigated stimulative
4
effects inhaling
4

Similar Publications

Tobacco use disorder is a chronic disorder that affects more than one billion people worldwide and causes the death of millions each year. The rewarding properties of nicotine are critical for the initiation of smoking. Previous research has shown that the activation of glucocorticoid receptors (GRs) plays a role in nicotine self-administration in rats.

View Article and Find Full Text PDF

Melatonin (MT), an endogenous hormone secreted by pineal gland, has the sedative, anti-inflammatory and antioxidant functions. However, there are few studies on whether MT affects the proliferation and differentiation of antler chondrocytes. The present study investigated the influences of MT on the proliferation and differentiation of antler chondrocytes, explored its regulation on runt-related transcription factor 2 (RUNX2), NOTCH1 and sonic hedgehog (SHH) signaling, and elucidated their interplays.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

While olfactory behaviors are influenced by neuromodulatory signals, the underlying mechanism remains unknown. The olfactory tubercle (OT), a component of the olfactory cortex and ventral striatum, consists of anteromedial (am) and lateral (l) domains regulating odor-guided attractive and aversive behaviors, respectively, in which the amOT highly expresses various receptors for feeding-regulated neuromodulators. Here we show functions of appetite-stimulating orexin-1 receptor (OxR1) signaling in the amOT.

View Article and Find Full Text PDF

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality in the intensive care unit (ICU) and can cause excessive inflammation. Dexmedetomidine (DEX) is a drug that exerts anti-inflammatory effects. Identifying the anti-inflammatory mechanism of DEX in the context of ALI/ARDS possesses potential significance for the prevention and treatment of ARDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!