The use of natural teeth for performing in vivo , in situ and/or in vitro studies has been widely observed in the dental field. The mechanical behavior of teeth subjected to masticatory efforts is commonly used as a variable of response. In conditions of malocclusion, the most relevant component accounting for the integrity of the dental structure is non-axial (flexural). This force, while acting on a tooth in function in the oral cavity, generates a similar situation as that of a beam in balance supporting a load concentrated on its free extremity. Based on this configuration, a methodology has been developed to investigate the behavior of teeth subjected to this kind of efforts, taking into consideration specific aspects of the tested teeth, such as the transversal section area and the moment of inertia. For determination of the transversal section area an image analysis program was used. For assessment of the other variables, a C++ language program was implemented utilizing the Borland Compiler C++ Builder, version 1.0, for Windows (Borland International, USA). The applicability of the developed methodology is illustrated in this article using bovine teeth. Our findings indicate that more accurate data can be obtained with the application of this methodology and that it is suitable for studies testing the flexural strength of extracted teeth, as a variable of response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0103-64402005000100008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!