Neisseria meningitidis is a human specific pathogen that is part of the normal nasopharyngeal flora. Little is known about the metabolic constraints on survival of the meningococcus during colonization of the upper airways. Here we show that glucose and lactate, both carbon energy sources for meningococcal growth, are present in millimolar concentrations within nasopharyngeal tissue. We used a mutant defective for the uptake of lactate (C311DeltalctP) to investigate the contribution of this energy source during colonization. Explants of nasopharyngeal tissue were inoculated with the wild-type strain (C311) and C311DeltalctP; the mutant was recovered at significantly lower levels (P = 0.01) than C311 18 h later. This defect was not due to changes in the expression of adhesins or initial adhesion in C311DeltalctP to epithelial cells. Instead, lactate appears to be important energy source for the bacterium during colonization and is necessary for growth of the bacterium in nasopharyngeal tissue. Studies with other strains defective for the uptake of specific nutrients should provide valuable information about the environment in which N. meningitidis persists during carriage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1231078 | PMC |
http://dx.doi.org/10.1128/IAI.73.9.5762-5766.2005 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea.
Rationale: Nasopharyngeal tuberculosis (TB), a rare form of tuberculosis outside the lungs, can affect any organ or tissue in the body. It is difficult to diagnose because of nonspecific symptoms, often leading to delayed confirmation after the initial patient visit. Clinical manifestations such as cervical lymphadenopathy and irregular mucosal surfaces can be challenging to distinguish from nasopharyngeal cancer or malignant lymphoma.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, commonly associated with undifferentiated cell types and Epstein-Barr virus (EBV) infection. The presence of intense lymphocytic infiltration and elevated expression of programmed cell death ligand 1(PD-L1) in NPC highlights its potential for immunotherapy, yet current treatment outcomes remain suboptimal. In this review, we explore the tumor microenvironment of NPC to better understand the mechanisms of resistance to immunotherapy, evaluate current therapeutic strategies, and pinpoint emerging targets, such as tertiary lymphoid structures (TLSs), that could enhance treatment outcomes and prognostic accuracy.
View Article and Find Full Text PDFBackground: Postradiotherapy nasopharyngeal necrosis with granulation mass (PRNN-GM) is a rare subtype of postradiotherapy nasopharyngeal necrosis (PRNN). It is characterized by the formation of isolated granulomatous tissue masses or masses combined with PRNN. However, the relationship between clinical features and survival outcomes in PRNN-GM remains unclear.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Ear, Nose and Throat (ENT), The First People's Hospital of Jiande, No. 599 Yanzhou Avenue, Xin'anjiang Street, Jiande, 311600, Zhejiang, China.
Objective: To screen potential differentially expressed genes related to immune function in nasopharyngeal carcinoma through an online database, and to verify their mechanism of action, so as to provide a reference for the diagnosis and treatment of nasopharyngeal carcinoma in the future.
Methods: Differentially expressed genes were analyzed from the GSE227541 dataset, and functional enrichment analysis was conducted. With mucin 5B, oligomeric mucus/gel-forming as the focus, the correlation between its expression and immune indexes was analyzed by using the TIMER database.
Eur J Orthod
December 2024
Department of General Surgery and Medical-Surgical Specialties, Section of Orthodontics, University of Catania, Policlinico Universitario 'Gaspare Rodolico-San Marco', Via Santa Sofia 78, 95123, Catania, Italy.
Background/objectives: Evidence suggests nasal airflow resistance reduces after rapid maxillary expansion (RME). However, the medium-term effects of RME on upper airway (UA) airflow characteristics when normal craniofacial development is considered are still unclear. This retrospective cohort study used computer fluid dynamics (CFD) to evaluate the medium-term changes in the UA airflow (pressure and velocity) after RME in two distinct age-based cohorts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!