The Babesia bovis merozoite surface antigen 1 (MSA-1) is an immunodominant membrane glycoprotein that is the target of invasion-blocking antibodies. While antigenic variation has been demonstrated in MSA-1 among strains from distinct geographical areas, the extent of sequence variation within a region where it is endemic and the effect of variation on immunologic cross-reactivity have not been assessed. In this study, sequencing of MSA-1 from two Australian B. bovis vaccine strains and 14 breakthrough isolates from vaccinated animals demonstrated low sequence identity in the extracellular region of the molecule, ranging from 19.8 to 46.7% between the T vaccine strain and eight T vaccine breakthrough isolates, and from 18.7 to 99% between the K vaccine strain and six K vaccine breakthrough isolates. Although MSA-1 amino acid sequence varied substantially among strains, overall predicted regions of hydrophilicity and hydrophobicity in the extracellular domain were conserved in all strains examined, suggesting a conserved functional role for MSA-1 despite sequence polymorphism. Importantly, the antigenic variation created by sequence differences resulted in a lack of immunologic cross-reactivity among outbreak strains using sera from animals infected with the B. bovis vaccine strains. Additionally, sera from cattle hyperinfected with the Mexico strain of B. bovis and shown to be clinically immune did not cross-react with MSA-1 from any other isolate tested. The results indicate that isolates of B. bovis capable of evading vaccine-induced immunity contain an msa-1 gene that is significantly different from the msa-1 of the vaccine strain, and that the difference can result in a complete lack of cross-reactivity between MSA-1 from vaccine and breakthrough strains in immunized animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1231062 | PMC |
http://dx.doi.org/10.1128/IAI.73.9.5388-5394.2005 | DOI Listing |
Clin Exp Med
December 2024
Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland.
Decades of basic and translational research have led to a momentum shift in dissecting the relationship between immune cells and cancer. This culminated in the emergence of breakthrough immunotherapies that paved the way for oncologists to manage certain hard-to-treat cancers. The application of high-throughput techniques of genomics, transcriptomics, and proteomics was conclusive in making and expediting the manufacturing process of cancer vaccines.
View Article and Find Full Text PDFFront Immunol
December 2024
Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion.
View Article and Find Full Text PDFJ Med Virol
December 2024
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
International Institute of Molecular and Cell Biology in Warsaw, Ksiecia Trojdena 4, 02-109 Warsaw, Poland.
In vitro transcription (IVT) is a technology of vital importance that facilitated the production of mRNA therapeutics and drove numerous breakthroughs in RNA biology. T7 polymerase-produced RNAs can begin with either 5'-triphosphate guanosine (5'-pppG) or 5'-triphosphate adenosine (5'-pppA), generating potential agonists for the RIG-I/type I interferon response. While it is established that IVT can yield highly immunogenic double-stranded RNA (dsRNA) via promoterless transcription, the specific contribution of initiating nucleosides to this process has not been previously reported.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia.
Cancer is a devastating disease worldwide with high mortality rates and is a foremost concern for society. Immunotherapy has emerged as a promising strategy for treating cancer, harnessing the power of immune system to recognize and kill tumor cells. Bacterial ghosts (BGs), a novel platform in cancer vaccination, are suitable for personalized and effective immunotherapeutic interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!