Stepwise length changes in single invertebrate thick filaments.

Biophys J

Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.

Published: November 2005

Previous experiments on thick filaments of the anterior byssus retractor muscle of Mytilus and the telson-levator muscle of Limulus polyphemus have shown large, reversible length changes up to 23% and 66% of initial length, respectively, within the physiological tension range. Using nanofabricated cantilevers and newly developed high-resolution detection methods, we investigated the dynamics of isolated Mytilus anterior byssus retractor muscle thick filaments. Single thick filaments were suspended between the tips of two microbeams oriented perpendicular to the filament axis: a deflectable cantilever and a stationary beam. Axial stress was applied by translating the base of the deflectable nanolever away from the stationary beam, which bent the nanolever. Tips of flexible nanolevers and stationary beam were imaged onto a photodiode array to track their positions. Filament shortening and lengthening traces, obtained immediately after the motor had imposed stress on the filament, showed steps and pauses. Step sizes were 2.7 nm and integer multiples thereof. Steps of this same size paradigm have been seen both during contraction of single sarcomeres and during active interaction between single isolated actin and myosin filaments, raising the question whether all of these phenomena might be related.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366822PMC
http://dx.doi.org/10.1529/biophysj.105.069864DOI Listing

Publication Analysis

Top Keywords

thick filaments
16
stationary beam
12
length changes
8
anterior byssus
8
byssus retractor
8
retractor muscle
8
filaments
5
stepwise length
4
single
4
changes single
4

Similar Publications

Direct Ink Writing 3D Printing Polytetrafluoroethylene/Polydimethylsiloxane Membrane with Anisotropic Surface Wettability and Its Application in Oil-Water Separation.

Polymers (Basel)

January 2025

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.

View Article and Find Full Text PDF

Effects of Printing Orientation on the Tensile, Thermophysical, Smoke Density, and Toxicity Properties of Ultem 9085.

Polymers (Basel)

January 2025

Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia.

Despite the impressive properties of additively manufactured products, their inherent anisotropy is a crucial challenge for polymeric parts made via fused filament fabrication (FFF). This study compared the tensile, thermophysical, smoke density, and toxicity characteristics of Ultem 9085 (a blend of polyetherimide and polycarbonate) for samples printed in various orientations (X, Y, and Z). The results revealed that mechanical properties, such as elastic modulus and tensile strength, significantly differed from the Z printing orientation, particularly in the X and Y printing layer orientations.

View Article and Find Full Text PDF

This study investigates the influence of printing parameters on the tensile properties and void architecture of poly(lactic) acid (PLA) parts fabricated using the fused filament fabrication (FFF) technique. Two Taguchi optimisation methods were employed to identify the optimal parameter combinations for maximising tensile performance. The results revealed a positive correlation between tensile performance and nozzle diameter (ND).

View Article and Find Full Text PDF

Hennegoides Africanus sp. nov. from Kadey River in Cameroon.

Acta Parasitol

January 2025

Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.

Purpose: Fish are susceptible to various parasitic infections, with Myxozoa emerging as a major group. A taxonomic study of Myxozoa is essential for the rapid diagnosis of species potentially responsible for epizootic diseases.

Methods: The studied fish was collected from the Kadey River, a tributary of the Sangha River in the Congo Basin in Cameroon, and parasitologically dissected.

View Article and Find Full Text PDF

Purpose: The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is an invasive and a highly polyphagous species with a strong dispersal capacity. Unfortunately, there is currently no effective control method that can prevent or reduce the economic loss caused by this pest. Among natural enemies, microsporidia cause infections in insects so that they can generally shorten life span, reduce fertility and inhibit growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!