The monoculture strategy of forest management, where the same tree species (e.g., Picea abies) is cultivated in a number of successive planting-growing-felling cycles, is generally considered to be economically efficient, yet not sustainable as it reduces biodiversity in the forest. The sound alternative suggests a long-term strategy of forest management in which different forest types rotate either with planting after clear cutting, or by natural forest succession, yet the commercial output remains dubious. We suggest an approach to formalization and modelling forest dynamics in the long-term by means of Markov chains, the monoculture strategy resulting in an absorbing chain and the rotation one in a regular chain. The approach is illustrated with a case study of Russkii Les, a managed forest located in the Moscow Region, Russia, and the nearby forest reserve having been used as a data source for undisturbed forest dynamics. Starting with conceptual schemes of transitions among certain forest types (states of the chain) in the monoculture and rotation cases, we estimated the transition probabilities by an original method based on average duration of the corresponding states and on the likelihood of alternative transitions from a state into the next one. Formal analysis of the regular chain reveals an opportunity to achieve particular management objectives within the rotation strategy, in particular, to get the distribution of forest types in accordance with an adopted hierarchy of their commercial values, i.e. more valuable types have greater shares.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2005.03.005DOI Listing

Publication Analysis

Top Keywords

forest types
12
forest
11
monoculture rotation
8
monoculture strategy
8
strategy forest
8
forest management
8
forest dynamics
8
regular chain
8
monoculture
4
rotation strategies
4

Similar Publications

Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.

View Article and Find Full Text PDF

Introduction: Diagnostic evaluations for attention-deficit/hyperactivity disorder (ADHD) are becoming increasingly complicated by the number of adults who fabricate or exaggerate symptoms. Novel methods are needed to improve the assessment process required to detect these noncredible symptoms. The present study investigated whether unsupervised machine learning (ML) could serve as one such method, and detect noncredible symptom reporting in adults undergoing ADHD evaluations.

View Article and Find Full Text PDF

Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals ( L. subsp. (C.

View Article and Find Full Text PDF

Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.

View Article and Find Full Text PDF

Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!