Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Voltage-gated Na(+) channel (VGSC) diversity is achieved through a number of mechanisms: multiple subunits, multiple genes encoding the pore-forming VGSC alpha-subunit and multiple gene isoforms generated by alternative splicing. A major type of VGSCalpha alternative splicing is in D1:S3, which has been proposed to be developmentally regulated. We recently reported a D1:S3 spliced form of Na(v)1.5 in human metastatic breast cancer cells. This novel 'neonatal' isoform differs from the counterpart 'adult' form at seven amino acids (in the extracellular loop between S3-S4 of D1). Here, we generated an anti-peptide polyclonal antibody, named NESOpAb, which specifically recognised 'neonatal' but not 'adult' Na(v)1.5 when tested on cells specifically over-expressing one or other of these Na(v)1.5 spliced forms. The antibody was used to investigate developmental expression of 'neonatal' Na(v)1.5 (nNa(v)1.5) in a range of mouse tissues by immunohistochemistry. Overall, the results were consistent with nNa(v)1.5 protein being more abundantly expressed in selected tissues (particularly heart and brain) from neonate as compared to adult animals. Importantly, NESOpAb blocked functional nNa(v)1.5 ion conductance when applied extracellularly at concentrations as low as 0.05 ng/ml. Possible biological and clinical applications of NESOpAb are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2005.03.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!