Characterization of carbonaceous species of ambient PM2.5 in Beijing, China.

J Air Waste Manag Assoc

Department of Environmental Science and Engineering, Tsinghua University, Beijing, China.

Published: July 2005

One-week integrated fine particulate matter (i.e., particles <2.5 microm in diameter; PM2.5) samples were collected continuously with a low-flow rate sampler at a downtown site (Chegongzhuang) and a residential site (Tsinghua University) in Beijing between July 1999 and June 2000. The annual average concentrations of organic carbon (OC) and elemental carbon (EC) at the urban site were 23.9 and 8.8 microg m(-3), much higher than those in some cities with serious air pollution. Similar weekly variations of OC and EC concentrations were found for the two sampling sites with higher concentrations in the winter and autumn. The highest weekly variations of OC and EC occurred in the winter, suggesting that combustion sources for space heating were important contributors to carbonaceous particles, along with a significant impact from variable meteorological conditions. High emissions coupled with unfavorable meteorological conditions led to the max weekly carbonaceous concentration the week of November 18-25, 1999. The weekly mass ratios of OC:EC ranged between 2 and 4 for most samples and averaged 2.9, probably suggesting that secondary OC (SOC) is present most weeks. The range of contemporary carbon fraction, based on the C14 analyses of eight samples collected in 2001, is 0.330-0.479. Estimated SOC accounted for approximately 38% of the total OC at the two sites. Average OC and EC concentrations at Tsinghua University were 25% and 18%, respectively, higher than those at Chegongzhuang, which could be attributed to different local emissions of primary carbonaceous particles and gaseous precursors of SOC, as well as different summer photochemical intensities between the two locations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2005.10464699DOI Listing

Publication Analysis

Top Keywords

characterization carbonaceous
4
carbonaceous species
4
species ambient
4
ambient pm25
4
pm25 beijing
4
beijing china
4
china one-week
4
one-week integrated
4
integrated fine
4
fine particulate
4

Similar Publications

Abstract: The effects of post-hydration heating over a broad range of temperatures are evident in many Mighei-like carbonaceous (CM) chondrites as a variety of mineral transitions. To better understand these processes and how a CM chondrite's starting composition may have affected them, we experimentally heated two meteorites with different degrees of aqueous alteration, Allan Hills 83100 and Murchison, at 25 °C temperature steps from 200 °C to 950 °C and 300 °C to 750 °C, respectively. During heating, synchrotron in situ X-ray diffraction patterns were collected.

View Article and Find Full Text PDF

Emerging threats in Сentral Asia: Comparative characterization of organic and elemental carbon in ambient PM in urban cities of Kazakhstan.

Chemosphere

December 2024

Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan. Electronic address:

This study (June 2022-July 2023) investigates the atmospheric concentrations of carbonaceous species, including organic carbon (OC) and elemental carbon (EC), in PM in two major cities in Kazakhstan. Samples were collected from two sites in Almaty (Seifullin and KazNU) and one in Astana. The results showed that Almaty had significantly higher annual average concentrations of OC (10.

View Article and Find Full Text PDF

MOF biochar composites for environmental protection and pollution control.

Bioresour Technol

December 2024

School of Engineering, The University of Manchester, Manchester M13 9PL, UK. Electronic address:

Research studies on Metal Organic Frameworks (MOF) based composites and their potential applications in environmental engineering and pollution control have recently emerged. An attractive material to form MOF composites is biochar (BC); a low-cost, highly porous carbonaceous by-product of biomass pyrolysis. This paper presents a critical review on MOF-biochar composites, focusing on fabrication, characterisation, modification, and applications in environmental protection and pollution control.

View Article and Find Full Text PDF

Characterization and catalytic activity of Co/Mo-modified activated carbons derived from orange peels in limonene oxidation.

Environ Sci Pollut Res Int

December 2024

Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland.

The possibility of using orange peels for the preparation of porous activated carbons by the chemical activation with HPO and the application of the obtained carbonaceous materials as the metal catalyst supports was investigated. Activated carbon and carbon-metal materials were used as the limonene oxidation catalysts. The materials were characterized by the following instrumental methods: the sorption of N2 at-196 °C, XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy) and SEM (Scanning Electron Microscope), XPS (The X-ray photoelectron spectroscopy).

View Article and Find Full Text PDF

Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (-). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (). The developed catalyst was characterized using Fourier transform infrared (FTIR), a Brunauer-Emmett-Teller (BET) surface area analyzer, a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and a particle size analyzer (PSA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!