Studies on normal human reticulocytes have been limited by a lack of methods for effective reticulocyte enrichment. This study shows a convenient new approach for selective enrichment of reticulocytes from normal blood samples. We have developed a modified arabinogalactan density gradient that contains high potassium levels, approximating the internal cation composition of red blood cells (RBC). The low-density populations from this gradient are enriched in reticulocytes, and the highly selected lowest density fraction shows a much higher reticulocyte enrichment than that obtained with high sodium chloride arabinogalactan density gradients, or other previously reported density gradient methods. We found that this improved isolation is caused by suppression of potassium loss and reticulocyte dehydration via chloride (KCI) cotransport. When the low-density fraction of RBC from a high-potassium gradient was subsequently incubated in high sodium chloride medium and reseparated on a sodium chloride density gradient, the reticulocytes dehydrated and were recovered in high-density fractions. The highest-density fractions from this secondary gradient yield 95% to 99% reticulocytes. We anticipate that this method will benefit investigators who require reticulocyte enriched populations for a wide variety of applications.

Download full-text PDF

Source

Publication Analysis

Top Keywords

density gradient
12
sodium chloride
12
improved isolation
8
normal human
8
human reticulocytes
8
reticulocyte enrichment
8
arabinogalactan density
8
high sodium
8
reticulocytes
6
gradient
6

Similar Publications

Precise description of the interaction between molecular oxygen and metal surfaces is one of the most challenging topics in quantum chemistry. In this work, we use low-temperature scanning tunneling microscopy (STM) to identify and characterize an adsorption state of molecular oxygen that coordinates to three Ag atoms (μ) on Ag(100). Surprisingly, μ-O cannot be identified as a stable configuration with generalized gradient approximation (GGA)-level density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Background: Magnetic resonance (MR) diffusion-derived 'vessel density' (DDVD) is calculated according to: DDVD = Sb0/ROI - S/ROI, where S and S refer to the tissue signal when -value is 0 or 2 s/mm. S and ROI can also be approximated by other low -values diffusion-weighted imaging (DWI). This study investigates the influence of the second motion probing gradient -value and T2 on DDVD calculations of the liver, spleen, and liver simple cyst.

View Article and Find Full Text PDF

The acceleration of urbanization has significantly exacerbated climate change due to excessive anthropogenic carbon emissions and air pollutants. Based on data from 281 prefecture-level cities in China between 2015 and 2021. The spatiotemporal co-evolution of urban carbon emissions and air pollutants was analyzed through map visualization and kernel density estimation, revealing non-equilibrium and heterogeneity.

View Article and Find Full Text PDF

This computational study investigated the catalytic efficiency of novel RhCp complexes (X = CF, SiF, CCl, SOH) in [3 + 2] azide-alkyne cycloaddition reactions density functional theory (MN12-L/Def2-SVP). Through quantum mechanical approaches, we explore the impact of different substituents on the Cp* ligand on the mechanism, selectivity, and reactivity of these Rh-based catalysts. Non-covalent interaction (NCI) and reduced density gradient (RDG) analyses, along with frontier molecular orbital (FMO) and Hirshfeld atomic charge analyses, were utilized to assess ligand stability and catalytic performance.

View Article and Find Full Text PDF

A novel series of azo dyes was successfully synthesized by combining amino benzoic acid and amino phenol on the same molecular framework azo linkage. The structural elucidation of these dyes was carried out using various spectroscopic techniques, including UV-vis, FT-IR, NMR spectroscopy, and HRMS. Surprisingly, the aromatic proton in some dyes exhibited exchangeability in DO, prompting a 2D NMR analysis to confirm this phenomenon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!