We have analyzed the distribution of RNA nucleotidyltransferases from the family that includes poly(A) polymerases (PAP) and tRNA nucleotidyltransferases (TNT) in 43 bacterial species. Genes of several bacterial species encode only one member of the nucleotidyltransferase superfamily (NTSF), and if that protein functions as a TNT, those organisms may not contain a poly(A) polymerase I like that of Escherichia coli. The genomes of several of the species examined encode more than one member of the nucleotidyltransferase superfamily. The function of some of those proteins is known, but in most cases no biochemical activity has been assigned to the NTSF. The NTSF protein sequences were used to construct an unrooted phylogenetic tree. To learn more about the function of the NTSFs in species whose genomes encode more than one, we have examined Bacillus halodurans. We have demonstrated that B. halodurans adds poly(A) tails to the 3' ends of RNAs in vivo. We have shown that the genes for both of the NTSFs encoded by the B. halodurans genome are transcribed in vivo. We have cloned, overexpressed, and purified the two NTSFs and have shown that neither functions as poly(A) polymerase in vitro. Rather, the two proteins function as tRNA nucleotidyltransferases, and our data suggest that, like some of the deep branching bacterial species previously studied by others, B. halodurans possesses separate CC- and A-adding tRNA nucleotidyltransferases. These observations raise the interesting question of the identity of the enzyme responsible for RNA polyadenylation in Bacillus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196141PMC
http://dx.doi.org/10.1128/JB.187.17.5927-5936.2005DOI Listing

Publication Analysis

Top Keywords

trna nucleotidyltransferases
16
bacterial species
12
rna nucleotidyltransferases
8
bacillus halodurans
8
encode member
8
member nucleotidyltransferase
8
nucleotidyltransferase superfamily
8
ntsf protein
8
polya polymerase
8
nucleotidyltransferases
6

Similar Publications

RNA helicase DEAD-box helicase 1 (DDX1) forms a complex with the RNA ligase 2´,3´-cyclic phosphate and 5´-OH ligase (RTCB), which plays a vital role in non-spliceosomal splicing of tRNA and X-box binding protein 1 (XBP1) mRNA. However, the importance of DDX1 in non-spliceosomal splicing has not been clarified. To analyze the functions of DDX1 in mammalian cells, we generated DDX1 cKO cells from the polyploid human U2OS cell line and found that splicing of intron-containing tRNAs was significantly disturbed in DDX1-deficient cells, whereas endoplasmic reticulum (ER) stress-induced splicing of XBP1 mRNA was unaffected.

View Article and Find Full Text PDF

tRNA nucleotidyltransferase represents a ubiquitous and essential activity that adds the indispensable CCA triplet to the 3'-end of tRNAs. To fulfill this function, the enzyme contains a set of highly conserved motifs whose coordinated interplay is crucial for the sequence-specific CCA polymerization. In the human enzyme, alterations within these regions have been shown to lead to the manifestation of disease.

View Article and Find Full Text PDF
Article Synopsis
  • The TRAMP complex is crucial for RNA processing and features two key enzymatic activities that involve both polyadenylation and unwinding of RNA.
  • New research using hydrogen-deuterium exchange data reveals insights into how TRAMP assembles and shuffles RNA between its catalytic sites, which are not fully understood.
  • Findings indicate that peripheral RNA-recognition motifs affect TRAMP assembly and that different active-site subunits interact with tRNA in ways that influence RNA transfer between TRAMP components.
View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the incidence and clinical significance of coexistence of anti-aminoacyl-tRNA synthetase (anti-ARS) antibody in patients with anti-melanoma differentiation-associated gene 5-positive dermatomyositis (anti-MDA5 + DM).

Methods: We assessed a cohort of 246 consecutive patients with anti-MDA5 + DM. Clinical characteristics and survival rates were compared between patients with and without anti-ARS antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!