Circadian clock control by SUMOylation of BMAL1.

Science

Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France.

Published: August 2005

The molecular machinery that governs circadian rhythmicity is based on clock proteins organized in regulatory feedback loops. Although posttranslational modification of clock proteins is likely to finely control their circadian functions, only limited information is available to date. Here, we show that BMAL1, an essential transcription factor component of the clock mechanism, is SUMOylated on a highly conserved lysine residue (Lys259) in vivo. BMAL1 shows a circadian pattern of SUMOylation that parallels its activation in the mouse liver. SUMOylation of BMAL1 requires and is induced by CLOCK, the heterodimerization partner of BMAL1. Ectopic expression of a SUMO-deficient BMAL1 demonstrates that SUMOylation plays an important role in BMAL1 circadian expression and clock rhythmicity. This reveals an additional level of regulation within the core mechanism of the circadian clock.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1110689DOI Listing

Publication Analysis

Top Keywords

circadian clock
8
sumoylation bmal1
8
clock proteins
8
bmal1 circadian
8
bmal1
7
circadian
6
clock
6
clock control
4
sumoylation
4
control sumoylation
4

Similar Publications

Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues.

View Article and Find Full Text PDF

Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.

View Article and Find Full Text PDF

Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light.

View Article and Find Full Text PDF

The circadian clock is crucial in plant immunity and metabolism, yet the coordinating mechanisms remain elusive. In the present study, transcriptome analysis of -infected rice leaves and rhythmic analysis showed reduced amplitudes of circadian and phytochrome genes, impacting immune response, metabolic pathways, and calcium signaling. The amplitudes of pattern-triggered immunity (PTI)-related genes declined, while the rhythmicity of effector-triggered immunity (ETI)-related genes disappeared.

View Article and Find Full Text PDF

Chronic insomnia has the potential to significantly impact physical well-being, occupational performance, and overall quality of life. This review summarizes the clinical and basic research on the central regulatory mechanism of acupuncture in treating primary insomnia (PI), aiming to explore the clinical effectiveness and possible mechanism of acupuncture in treating PI. The currently available drugs for insomnia exhibit notable adverse effects and tend to induce dependence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!