Sensitisation to mites in laboratory animal workers with rhinitis.

Occup Environ Med

Department of Otorhinolaryngology, Kuopio University Hospital, Kuopio, Finland, Kuopio, Finland.

Published: September 2005

Aims: To determine the frequency of sensitisation to mites among rhinitic laboratory animal workers and to clarify whether sensitisation could be occupational.

Methods: Skin prick tests (SPT) were performed in 40 subjects who were working with laboratory animals in Kuopio University research units and who had been referred to Kuopio University Hospital for work related rhinitis. The SPT panel consisted of three storage mites, two house dust mites, 11 other common environmental airborne allergens, latex, and 2-4 individually relevant laboratory animals. To determine signs of mites in animal facilities, guanine was determined in 22 dust samples taken from feedstuffs or bedding material used for laboratory animals and from rooms where these materials were stored and handled.

Results: Positive SPT results were found in 35 out of 40 workers: in 14 for storage mites, four for house dust mites, 25 for other common aeroallergens, as well as positive reactions to laboratory animals in 19 individuals. The guanine test was positive, indicating the presence of mite derived material in 21 out of 22 dust samples.

Conclusions: This study suggests that subjects who are occupationally exposed to laboratory animals are also exposed to mite derived allergens. Sensitisation to mites is common and may be work related.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1741079PMC
http://dx.doi.org/10.1136/oem.2004.015685DOI Listing

Publication Analysis

Top Keywords

laboratory animals
20
sensitisation mites
12
mites common
12
laboratory animal
8
animal workers
8
kuopio university
8
storage mites
8
mites house
8
house dust
8
dust mites
8

Similar Publications

Transcriptomic Profiling Reveals 17β-Estradiol Treatment Represses Ubiquitin-Proteasomal Mediators in Skeletal Muscle of Ovariectomized Mice.

J Cachexia Sarcopenia Muscle

February 2025

Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.

Background: With a decline of 17β-estradiol (E2) at menopause, E2 has been implicated in the accompanied loss of skeletal muscle mass and strength. We aimed at characterizing transcriptomic responses of skeletal muscle to E2 in female mice, testing the hypothesis that genes and pathways related to contraction and maintenance of mass are differentially expressed in ovariectomized mice with and without E2 treatment.

Methods: Soleus and tibialis anterior (TA) muscles from C57BL/6 ovariectomized mice treated with placebo (OVX) or E2 (OVX + E2) for 60 days, or from skeletal muscle-specific ERα knockout (skmERαKO) mice and wild-type littermates (skmERαWT), were used for genome-wide expression profiling, quantitative real-time PCR and immunoblotting.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes.

View Article and Find Full Text PDF

Advances in liver organoids: replicating hepatic complexity for toxicity assessment and disease modeling.

Stem Cell Res Ther

January 2025

Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.

The lack of in vivo accurate human liver models hinders the investigation of liver-related diseases, injuries, and drug-related toxicity, posing challenges for both basic research and clinical applications. Traditional cellular and animal models, while widely used, have significant limitations in replicating the liver's complex responses to various stressors. Liver organoids derived from human pluripotent stem cells, adult stem cells primary cells, or tissues can mimic diverse liver cell types, major physiological functions, and architectural features.

View Article and Find Full Text PDF

Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!