A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitrite-derived nitric oxide by xanthine oxidoreductase protects the liver against ischemia-reperfusion injury. | LitMetric

Nitrite-derived nitric oxide by xanthine oxidoreductase protects the liver against ischemia-reperfusion injury.

Hepatobiliary Pancreat Dis Int

Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Published: August 2005

Background: It was demonstrated that xanthine oxidoreductase (XOR), during ischemia, catalyzes the formation of nitric oxide (NO) from nitrite (NO2-) and this NO2- -derived NO protects the isolated perfused rat heart against the damaging effects of ischemia-reperfusion (I/R) when conventional nitric oxide synthase (NOS)-dependent NO production is impaired. Liver is one of the organs with the highest XOR concentration. This study was designed to determine whether NO2- -derived NO by XOR protects liver against I/R injury in vivo. For its minute amounts and active reactivity, NO can not be detected directly in real time in vivo by this time. We have to prove the above hypothesis indirectly.

Methods: Wistar rats were pretreated with saline, NOS inhibitor L-NAME (10 mg/kg intravenously), XOR inhibitor allopurinol (1.5 mg/kg orally), L-NAME +allopurinol and NO scavenger carboxy-PTIO (0.6 mg/kg intravenously) respectively (12 animals per group). And then, they were subjected to total liver ischemia for 40 minutes followed by reperfusion. Blood samples and liver tissues were obtained for analysis after 3 hours of reperfusion. Survival was also investigated.

Results: Allopurinol-treated animals exhibited further increased serum alanine aminotransferase(ALT) levels and liver myeloperoxidase(MPO) activities, but further decreased liver adenosine triphosphate(ATP) stores after I/R compared to saline-treated counterparts (830.5+/-108.3 U/L, 56.5+/-11.0 U/mg protein and 1.93+/-0.47 mumol/g vs. 505.8+/-184.2 U/L, 41.5+/-10.2 U/mg protein and 3.05+/-0.55 micromol/g respectively, P < 0.01, P < 0.05 and P < 0.01 respectively). The hepatocyte injury was further exacerbated and the overall survival rate was significantly decreased after I/R in animals given by allopurinol compared to those pretreated by saline (P < 0.05). L-NAME and allopurinol co-treated animals exhibited more severe liver injury (P < 0.05 and P<0.01)and a further decreased overall survival rate (P < 0.05)compared to L-NAME or allopurinol alone-treated counterparts, but they were not different from carboxy-PTIO treated animals (P > 0.05).

Conclusion: NO2- -derived NO by XOR in the hypoxic and acidic environment induced by hepatic I/R protects the liver against I/R injury in vivo.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nitric oxide
12
protects liver
12
no2- -derived
12
liver
9
xanthine oxidoreductase
8
-derived xor
8
liver i/r
8
i/r injury
8
injury vivo
8
pretreated saline
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!