Eukaryotes convert riboflavin to flavin adenine dinucleotide, which serves as a coenzyme for glutathione reductase and other enzymes. Glutathione reductase mediates the regeneration of reduced glutathione, which plays an important role in scavenging free radicals and reactive oxygen species. Here we tested the hypothesis that riboflavin deficiency decreases glutathione reductase activity in HepG2 liver cells, causing oxidative damage to proteins and DNA, and cell cycle arrest. As a secondary goal, we determined whether riboflavin deficiency is associated with gene expression patterns indicating cell stress. Cells were cultured in riboflavin-deficient and riboflavin-supplemented media for 4 days. Activity of glutathione reductase was not detectable in cells cultured in riboflavin-deficient medium. Riboflavin deficiency was associated with an increase in the abundance of damaged (carbonylated) proteins and with increased incidence of DNA strand breaks. Damage to proteins and DNA was paralleled by increased abundance of the stress-related transcription factor GADD153. Riboflavin-deficient cells arrested in G1 phase of the cell cycle. Moreover, oxidative stress caused by riboflavin deficiency was associated with increased expression of clusters of genes that play roles in cell stress and apoptosis. For example, the abundance of the pro-apoptotic pleiomorphic adenoma gene-like 1 gene was 183% greater in riboflavin-deficient cells compared with riboflavin-sufficient controls. We conclude that riboflavin deficiency is associated with oxidative damage to proteins and DNA in liver cells, leading to cell stress and G1 phase arrest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1407763PMC
http://dx.doi.org/10.1016/j.jnutbio.2005.05.004DOI Listing

Publication Analysis

Top Keywords

riboflavin deficiency
24
glutathione reductase
16
deficiency associated
16
cell cycle
12
damage proteins
12
proteins dna
12
cell stress
12
phase cell
8
liver cells
8
oxidative damage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!