Pancreatic cancer is characterised by a highly malignant phenotype with a marked resistance to conventional therapies and to apoptotic activators. Here, we demonstrate that sodium butyrate (NaBt), an inhibitor of histone deacetylases, sensitises human pancreatic cancer cell lines to both mitochondria- and Fas-mediated apoptosis. The analysis of anti-apoptotic and pro-apoptotic members of the Bcl-2 family in untreated pancreatic cancer cell lines shows a generalised low expression of Bcl-2 and a strong expression of Bcl-xL. NaBt treatment results in a marked down-regulation of Bcl-xL expression, mitochondrial membrane depolarization, cytochrome c release from mitochondria, activation of caspase-9 and -3 and apoptosis induction. Furthermore, NaBt sensitises pancreatic cancer cells to Fas-mediated apoptosis as well. In fact, the combined treatment with NaBt and the agonistic antibody anti-Fas (CH11) is able to induce apoptosis at an early time, in which neither NaBt nor CH11 alone induce apoptosis. Down-regulation of FLIP and activation of caspase-8 allow apoptosis to occur. These findings suggest that sodium butyrate could represent a good candidate for the development of new therapeutic strategies aimed at improving chemotherapy and immunotherapy in pancreatic cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2005.07.003DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
24
sodium butyrate
12
sensitises human
8
human pancreatic
8
cancer cells
8
cancer cell
8
cell lines
8
fas-mediated apoptosis
8
ch11 induce
8
induce apoptosis
8

Similar Publications

Background: Diabetes mellitus (DM), a chronic metabolic disease, is characterized by long-term hyperglycemia resulting from the defect of insulin production and insulin resistance. The damage and dysfunction of pancreatic β-cells is a main link in DM development.

Methods: In this work, pancreatic β-cell line INS-1E cells were exposed to 30 mM glucose for 48 h to construct an in vitro DM model.

View Article and Find Full Text PDF

Macrophage-specific in vivo RNA editing promotes phagocytosis and antitumor immunity in mice.

Sci Transl Med

January 2025

College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.

View Article and Find Full Text PDF

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts.

View Article and Find Full Text PDF

Grade progression of well differentiated pancreatic neuroendocrine tumors (panNETs) can occur over time, with G1/2 to G3 the most clinically relevant form. Here we conducted a retrospective cohort study of 66 patients with initially G1/2 panNET (median initial Ki67, 4.6%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!