The major immunological barrier that prevents the use of wild-type pig xenografts as an alternative source of organs for human xenotransplantation is antibody-mediated rejection. In this study, we identify the immunoglobulin variable region heavy (IgV(H)) chain genes encoding xenoantibodies to porcine heart and fetal porcine islet xenografts in non-immunosuppressed rhesus monkeys. We sought to compare the IgV(H) genes encoding xenoantibodies to porcine islets and solid organ xenografts. The immunoglobulin M (IgM) and IgG xenoantibody response was analysed by enzyme-linked immunosorbent assay and cDNA libraries from peripheral blood lymphocytes were prepared and sequenced. The relative frequency of IgV(H) gene usage was established by colony filter hybridization. Induced xenoantibodies were encoded by the IGHV3-11 germline progenitor, the same germline gene that encodes xenoantibodies in humans mounting active xenoantibody responses. The immune response to pig xenografts presented as solid organs or isolated cells is mediated by identical IgV(H) genes in rhesus monkeys. These animals represent a clinically relevant model to identify the immunological basis of pig-to-human xenograft rejection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1802413 | PMC |
http://dx.doi.org/10.1111/j.1365-2567.2005.02204.x | DOI Listing |
Cell Death Differ
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea. Electronic address:
This study aimed to investigate the effects of β-glucan derived from Euglena gracilis (EGB), an edible microalga, on particulate matter (PM)-induced airway inflammation in A549 cells and BALB/c mice. EGB effectively suppressed the mRNA and protein levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-8) and mediators (iNOS, COX-2), while inhibiting the NF-κB and MAPK signaling pathways triggered by PM exposure and reducing nuclear NF-κB levels. Additionally, EGB decreased PM-induced ROS production and increased the protein levels of NRF2 and HO-1, along with genes encoding antioxidant enzymes (catalase, GPx, SOD1), associated with elevated nuclear NRF2 levels.
View Article and Find Full Text PDFSci Total Environ
January 2025
Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland.
Urban water environments, including canals, harbours and estuaries are susceptible to contamination with antimicrobials and drug-resistant bacteria through domestic and industrial wastewater discharges and storm water overflows. There is potential for wildlife using these waters to acquire and transmit drug-resistant bacteria and antimicrobial resistance genes (ARGs) of clinical importance. This study aimed to assess clinically important drug-resistant bacteria in urban waterfowl, particularly mute swans.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!