Human telomeric repeat binding factor 1(TRF1) contains one Myb-type DNA-binding repeat and an amino-terminal acidic domain. It can bind to the duplex array of TTAGGG repeats at chromosome ends and is shown to be important in preserving genomic stability, maintaining cell proliferative capacity, and blocking the activation of DNA-damage cell cycle checkpoints. Interestingly, the double strand DNA breaks sensor ATM interacts with and phosphorylates Pin2/TRF1 and inhibits its function after DNA damage. Are there some proteins else that can interact with TRF1 and influence its function? In order to analysis the interaction between TRF1 and other proteins, we must prepare the antiserum that can recognize the endogenous TRF1 of cell lysates. TRF1 cDNA was amplified using cDNA Library of HeLa cell by PCR and cloned into pUCm-T vector. Sequence analysis reveals identity to the GenBank report. The TRF1 cDNA was subcloned into expression vector pET-28c(+) and expressed in E. coli as a fusion protein of 65 kD. The recombinant TRF1 can express in the supernatant (about 12.3% in total protein) on the induction of 0.5 mmol/L IPTG at 37 degrees C for 3 hours. Western-blot analysis showed the recombinant protein can react with TRF1 polyclonal antibody sc-6165 (from Santa Cruz Company). His6-TRF1 was purified by Ni(2+) -NTA resin affinity chromatography made by ourselves and showed to be homogeneity in SDS-PAGE. Rabbits were immunized for four times to prepare polyclonal antibody. The unpurified antiserum can recognize the overexpressed TRF1 with myc-tag and the endogenous Pin2/TRF1 of cell lysate by Western-blot at 1:1000 dilution. At 1:400 dilution, the antiserum can interact with endogenous TRF1 by Immunofluorescence cell staining analysis. The endogenous TRF1 in different cell lines, such as HepG2, 803, MCF7 and HeLa, locates in the nucleus. The soluble expression TRF1 and preparation of its antibody lay the foundation to study it further.

Download full-text PDF

Source

Publication Analysis

Top Keywords

endogenous trf1
12
trf1
11
antiserum recognize
8
trf1 cell
8
trf1 cdna
8
polyclonal antibody
8
cell
7
[cloning expression
4
expression htrf1
4
htrf1 escherichia
4

Similar Publications

TRF1 and TRF2 form distinct shelterin subcomplexes at telomeres.

bioRxiv

December 2024

Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing.

The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes . However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how omega-3 fatty acids (n-3 FA) might positively influence leukocyte telomere length (LTL), a marker of aging, using special mice that naturally have higher n-3 FA levels.
  • Results showed that fat-1 transgenic mice had significantly longer LTL compared to wild-type mice at 10 months old, suggesting that higher n-3 FA levels are linked to slower telomere shortening.
  • The findings indicate potential benefits of omega-3 fatty acids in reducing telomere attrition, which may help in combating premature aging.
View Article and Find Full Text PDF

Background: Motion quality is a critical property for essential functions. Several endogenous and exogenous factors are involved in sperm motility. Here, we measured the relative telomere length and evaluated the gene expression of its binding-proteins, shelterin complex (TRF1, TRF2, RAP1, POT1, TIN2, and TPP1) in sperm of dogs using relative quantitative real-time PCR.

View Article and Find Full Text PDF

A prolonged time span between ovulation and fertilization can cause postovulatory aging of oocytes, which impairs oocyte quality and subsequent embryo development. Telomere attrition has long been considered as the primary hallmark of aging or the cause of age-associated diseases. However, the status of telomere and its regulation during postovulatory oocyte aging are poorly understood.

View Article and Find Full Text PDF

Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins.

Methods Mol Biol

February 2018

University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.

Chronic oxidative stress is the major endogenous metabolic stress and contributes directly to telomere shortening and senescence. Understanding the dysfunction of telomeres under oxidative stress will greatly facilitate healthy aging and advance the treatment of aging-related diseases. Here, we describe the KR-TEL (KillerRed induced DNA damage at telomeres) system that induces site-specific oxidative damage at telomeres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!