RNA interference (RNAi) is an evolutionarily conserved sequence-specific post-transcriptional gene silencing mechanism that is well defined genetically in Caenorhabditis elegans. RNAi has been postulated to function as an adaptive antiviral immune mechanism in the worm, but there is no experimental evidence for this. Part of the limitation is that there are no known natural viral pathogens of C. elegans. Here we describe an infection model in C. elegans using the mammalian pathogen vesicular stomatitis virus (VSV) to study the role of RNAi in antiviral immunity. VSV infection is potentiated in cells derived from RNAi-defective worm mutants (rde-1; rde-4), leading to the production of infectious progeny virus, and is inhibited in mutants with an enhanced RNAi response (rrf-3; eri-1). Because the RNAi response occurs in the absence of exogenously added VSV small interfering RNAs, these results show that RNAi is activated during VSV infection and that RNAi is a genuine antiviral immune defence mechanism in the worm.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature03957DOI Listing

Publication Analysis

Top Keywords

rna interference
8
defence mechanism
8
caenorhabditis elegans
8
antiviral immune
8
mechanism worm
8
vsv infection
8
rnai response
8
rnai
7
antiviral
4
interference antiviral
4

Similar Publications

Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.

View Article and Find Full Text PDF

Short-Time Preamplification-Assisted One-Pot CRISPR Nucleic Acid Detection Method with Portable Self-Heating Equipment for Point-of-Care Diagnosis.

Anal Chem

January 2025

State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Techonology, Xi'an Jiaotong University, Xi'an 710054, China.

Infectious diseases, especially respiratory infections, have been significant threats to human health. Therefore, it is essential to develop rapid, portable, and highly sensitive diagnostic methods for their control. Herein, a short-time preamplified, one-pot clustered regularly interspaced short palindromic repeats (CRISPR) nucleic acid detection method (SPOC) is developed by combining the rapid recombinase polymerase amplification (RPA) with CRISPR-Cas12a to reduce the mutual interference and achieve facile and rapid molecular diagnosis.

View Article and Find Full Text PDF

Orthogonal RNA replication enables directed evolution and Darwinian adaptation in mammalian cells.

Nat Chem Biol

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells.

View Article and Find Full Text PDF

Dual signal amplification in ECL biosensors: A novel approach for argonaute2 detection using SAHARA CRISPR-Cas12a technology.

Bioelectrochemistry

December 2024

West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China. Electronic address:

Argonaute 2 (Ago2) is a crucial enzyme in the RNA interference (RNAi) pathway, essential for gene silencing via the cleavage of target messenger RNA (mRNA) mediated by microRNA (miRNA) or small interfering RNA (siRNA). The activity of Ago2 is a significant biomarker for various diseases, including cancer and viral infections, necessitating precise monitoring techniques. Traditional methods for detecting Ago2 activity are often cumbersome and lack the necessary sensitivity and specificity for low-abundance targets in complex samples.

View Article and Find Full Text PDF

The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!