Hearing loss affects children with biotinidase deficiency, an inherited metabolic disorder in the recycling of biotin. The deficit appears shortly after birth during development of the auditory system. Using a mouse model, we sought to discover where and when biotinidase is expressed in the normal development of the cochlea and cochlear nucleus. In the process, we reconstructed the normal morphogenetic sequences of the constituent cells. Immunolabeling for biotinidase was localized to neurons and other cells of the adult and immature mouse, including the embryonic precursors of these regions dating from the stage of the otocyst. Its distribution was compared to the particular morphological changes occurring at each developmental stage. Biotinidase was localized in cells and their processes at the critical stages in their proliferation, migration, structural differentiation, and innervation, covering the entire span of their development. The prevalence of immunostaining peaked in the adult animal, including hair cells and ganglion cells of the cochlea and neurons of the cochlear nucleus. The findings suggest that biotinidase plays a role in the normal development of the auditory system. Besides the pattern of localization of biotinidase, this study provides the first systematic account of each developmental stage in a mammalian auditory system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2005.06.013 | DOI Listing |
Elife
January 2025
Department of Mechanical Engineering, University of Rochester, Rochester, United States.
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
ENT Institute and Department of Otolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China.
Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks.
View Article and Find Full Text PDFEar Hear
January 2025
Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
Objectives: Real-time monitoring of cochlear function to predict the loss of residual hearing after cochlear implantation is now possible. Current approaches monitor the cochlear microphonic (CM) during implantation from the electrode at the tip of the implant. A drop in CM response of >30% is associated with poorer hearing outcomes.
View Article and Find Full Text PDFThe cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.
View Article and Find Full Text PDFCochlear Implants Int
December 2024
Department of ENT and Head & Neck Surgery, Seth GS Medical College & K.E.M. Hospital, Mumbai, India.
Introduction: Wolfram syndrome, a rare autosomal recessive disorder, is characterised by diabetes insipidus, juvenile diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD).
Case Report: We present a case of a 21-year-old male diagnosed with Wolfram syndrome who underwent cochlear implantation due to progressive hearing loss. The patient first complained of bilateral hearing loss at the age of 8 years.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!