Benzil has been identified as a potent selective inhibitor of carboxylesterases (CEs). Essential components of the molecule required for inhibitory activity include the dione moiety and the benzene rings, and substitution within the rings affords increased selectivity toward CEs from different species. Replacement of the benzene rings with heterocyclic substituents increased the K(i) values for the compounds toward three mammalian CEs when using o-nitrophenyl acetate as a substrate. Logarithmic plots of the K(i) values versus the empirical resonance energy, the heat of union of formation energy, or the aromatic stabilization energy determined from molecular orbital calculations for the ring structures yielded linear relationships that allowed prediction of the efficacy of the diones toward CE inhibition. Using these data, we predicted that 2,2'-naphthil would be an excellent inhibitor of mammalian CEs. This was demonstrated to be correct with a K(i) value of 1 nM being observed for a rabbit liver CE. In addition, molecular simulations of the movement of the ring structures around the dione dihedral indicated that the ability of the compounds to inhibit CEs was due, in part, to rotational constraints enforced by the dione moiety. Overall, these studies identify subdomains within the aromatic ethane-1,2-diones, that are responsible for CE inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm0504196 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Department of Chemistry, Faculty of Science, Cairo University, A. R, Egypt.
Background: Xanthene derivatives are a notable class of heterocyclic compounds widely studied for their significant biological impact. These molecules, found in both natural and synthetic forms, have attracted substantial scientific interest due to their broad spectrum of biological activities. The xanthene nucleus, in particular, is associated with a range of potential pharmaceutical properties, including antibacterial, antiviral, antiinflammatory, anticancer, and antioxidant effects.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2025
Department of Organic Chemistry, Medical University of Lublin, Lublin, Poland.
The ever-increasing drug-resistant tuberculosis (TB) has invigorated the focus on the discovery and development of novel therapeutic agents and treatment options. Thiazolidinone-based compounds have shown good antitubercular properties . Here, we report the design and synthesis of a number of new derivatives inspired by the structure of thiazolidine-2,4-dione (TZD).
View Article and Find Full Text PDFChemMedChem
December 2024
Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Kraków, Poland.
This study aimed to design new hybrid compounds with imidazolidin-2,4-dione and morpholine rings as broad spectrum anticonvulsants. To achieve this goal, all compounds were evaluated in animal seizure models, namely the maximal electroshock (MES), the subcutaneous pentylenetetrazole (scPTZ), and selected in the 6 Hz (32 mA) tests. The most promising compound, 5-isopropyl-3-(morpholinomethyl)-5-phenylimidazolidine-2,4-dione (19), demonstrated broader anticonvulsant activity than phenytoin or levetiracetam, with ED of 26.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
National and Local Joint Engineering Research Center for Advanced Packaging Materials and Technology, Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China.
The market demand for black polyimide (BPI) has grown hugely in the field of flexible copper-clad laminates (FCCLs) as a replacement for transparent yellow polyimide. The 3,6-bis(thiophen-2-yl)diketopyrrolopyrroles (TDPP) derivative is recognized for its high molar extinction coefficient. In this research, we have synthesized a diamine monomer named 3,6-bis[5-(4-amino-3-fluorophenyl)thiophen-2-yl]-2,5-bis(2-ethylhexyl)pyrrolo[4,3-c]pyrrole-1,4-dione (DPPTENFPDA), featuring a TDPP unit attached by fluorinated benzene rings.
View Article and Find Full Text PDFChem Mater
December 2024
School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Exploring both electron donor and acceptor phase components in bulk heterojunction structures has contributed to the advancement of organic photovoltaics (OPV) realizing power conversion efficiencies reaching 20%. Being able to control backbone planarity of the donor polymer, while understanding its effects on the polymer conformation and photophysical properties, fosters the groundwork for further achievements in this realm. In this report, three isomeric PM7 derivatives are designed and synthesized where the benzodithiophene-4,8-dione structure is replaced by a quaterthiophene bridge carrying two ester moieties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!