Surface EMG: how far can you go?

Suppl Clin Neurophysiol

Department of Clinical Neurophysiology, Institute of Neurology, University Medical Centre Nijmegen, 6500 HB Nijmegen, The Netherlands.

Published: September 2005

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1567-424x(09)70349-6DOI Listing

Publication Analysis

Top Keywords

surface emg
4
emg go?
4
surface
1
go?
1

Similar Publications

Biomechanical analysis of step-up and step-down tasks in knee osteoarthritis: Insights from leading and trailing limbs.

Clin Biomech (Bristol)

January 2025

Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Rd, #14-03 Clinical Sciences Building, 308232, Singapore; Department of Orthopaedic Surgery, Woodlands Health, National Healthcare Group, 737628, Singapore.

Background: Stair climbing tests are pivotal when assessing physical performance in knee osteoarthritis patients, yet the biomechanical strategies that underpin poor stair climbing ability are heterogeneously reported. Single step tasks emulate a step-by-step gait pattern, an approach associated with knee pain when stair climbing. The objective of this study is to analyse the biomechanics and electromyography activity of both the leading and trailing limbs during single Step-up and Down tasks in knee osteoarthritis patients.

View Article and Find Full Text PDF

Background: Most cases of spinal muscular atrophy (SMA) can be diagnosed by copy number analysis of survival motor neuron (SMN) 1. However, a small number of cases of SMA can only be diagnosed by sequencing analysis. We present a case of SMA diagnosed 7 years after the onset of symptoms.

View Article and Find Full Text PDF

Plug-and-play myoelectric control via a self-calibrating random forest common model.

J Neural Eng

January 2025

School of Informatics, The University of Edinburgh, 10 Chricton Street, Edinburgh, EH8 9LE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Objective: Electromyographic (EMG) signals show large variabilities over time due to factors such as electrode shifting, user behaviour variations, etc., substantially degrading the performance of myoelectric control models in long-term use. Previously one-time model calibration was usually required each time before usage.

View Article and Find Full Text PDF

Electromyography (EMG) is increasingly used in stroke assessment research, with studies showing that EMG co-contraction (EMG-CC) of upper limb muscles can differentiate stroke patients from healthy individuals and correlates with clinical scales assessing motor function. This suggests that EMG-CC has potential for both assessing motor impairments and monitoring recovery in stroke patients. However, systematic reviews on EMG-CC's effectiveness in stroke assessment are lacking.

View Article and Find Full Text PDF

Foam rolling is widespread and deeply rooted in exercise practice. The optimal duration and role of this treatment still lack scientific consensus. A relatively novel foam rolling treatment that combines vibration during application targets different muscle characteristics that are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!