[Dopamine: not just a neurotransmitter].

Postepy Hig Med Dosw (Online)

Zakład Regulacji Metabolizmu, Instytut Biochemii, Wydział Biologii, Uniwersytet Warszawski, 02-096 Warsaw.

Published: May 2006

Dopamine is an important endogenous catecholamine which exerts widespread effects both in neuronal (as a neurotransmitter) and non-neuronal tissues (as an autocrine or paracrine agent). Within the central nervous system, dopamine binds to specific membrane receptors presented by neurons and it plays the key role in the control of locomotion, learning, working memory, cognition, and emotion. The brain dopamine system is involved in various neurological and psychiatric disturbances such as Parkinson's Disease, schizophrenia, and amphetamine and cocaine addiction. Thus, this system is the major target of powerful drugs applied in the treatment of neuropsychiatric diseases. Physiological functions of the brain dopamine system are well recognized. However, dopamine biosynthesis does not only occur in neurons, but also in peripheral tissues. Dopamine receptors have been described in the kidney, pancreas, lungs, and in numerous blood vessels outside the central nervous system. Renal dopamine is now recognized as an important regulator of sodium extraction and electrolyte balance, while defective renal dopamine production and/or dopamine receptor function may contribute to the development of various forms of human and animal hypertension. This article gives a brief overview of the importance of dopamine acting as a neurotransmitter and peripheral hormone. Special consideration is given to: (i) biochemical disturbances occurring in both brain and kidneys in various diseases and (ii) current therapy correcting disturbances in dopamine systems.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dopamine
11
central nervous
8
nervous system
8
brain dopamine
8
dopamine system
8
renal dopamine
8
system
5
[dopamine neurotransmitter]
4
neurotransmitter] dopamine
4
dopamine endogenous
4

Similar Publications

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

This is an outline for a podcast. Parkinson's Disease (PD) is a progressive neurodegenerative disease in which there is increasing loss of dopamine neurones from the basal ganglia (Simon et al. Clin Geriatr Med.

View Article and Find Full Text PDF

Background: Central synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), involve alpha-synuclein accumulation and dopaminergic cell loss in the substantia nigra (SN) and locus coeruleus (LC). Pure autonomic failure (PAF), a peripheral synucleinopathy, often precedes central synucleinopathies.

Objectives: To assess early brain involvement in PAF using neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and fluorodopa-positron emission tomography (FDOPA-PET), and to determine whether PAF patients with a high likelihood ratio (LR) for conversion to a central synucleinopathy exhibit reduced NM-MRI contrast in the LC and SN compared with controls and low-LR patients.

View Article and Find Full Text PDF

Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, and Anopheles stephensi.

View Article and Find Full Text PDF

Despite significant progress in understanding the factors influencing cognitive function in Parkinson's disease (PD), there is a notable gap in data representation for the Latinx population. This study aims to evaluate the contributors to and disparities in cognitive performance among Latinx patients with PD. A retrospective analysis was conducted based on cross-sectional data encompassing demographic, environmental, motor, and non-motor disease characteristics from the Latin American Research Consortium on the Genetics of PD (LARGE-PD) and the Parkinson's Progression Markers Initiative (PPMI) cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!