The pathobiology of amyotrophic lateral sclerosis: a proteinopathy?

J Neuropathol Exp Neurol

Robarts Research Institute, Department of Clinical Neurological Sciences, The University of Western Ontario, London, Canada.

Published: August 2005

Amyotrophic lateral sclerosis (ALS) is increasingly considered to be a disorder of multiple etiologies that have in common progressive degeneration of both upper and lower motor neurons, ultimately giving rise to a relentless loss of muscle function. This progressive degeneration is associated with heightened levels of oxidative injury, excitotoxicity, and mitochondrial dysfunction--all occurring concurrently. In this article, we review the evidence that suggests, in common with other age-dependent neurodegenerative disorders, that ALS can be considered a disorder of protein aggregation. Morphologically, this is evident as Bunina bodies, ubiquitin-immunoreactive fibrils or aggregates, neurofilamentous aggregates, mutant copper/zinc superoxide dismutase (SOD1) aggregates in familial ALS variants harboring mutations in SOD1, peripherin-immunoreactive aggregates within spinal motor neurons and as neuroaxonal spheroids, and in an increasingly greater population of patients with ALS with cognitive impairment, both intra- and extraneuronal tau aggregates. We review the evidence that somatotopically specific patterns of altered kinase and phosphatase activity are associated with alterations in the phosphorylation state of these proteins, altering either solubility or assembly characteristics. The role of nonneuronal cells in mediating motor neuronal injury is discussed in the context of alterations in tyrosine kinase activity and enhanced protein phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.jnen.0000173889.71434.eaDOI Listing

Publication Analysis

Top Keywords

amyotrophic lateral
8
lateral sclerosis
8
considered disorder
8
progressive degeneration
8
motor neurons
8
review evidence
8
aggregates
5
pathobiology amyotrophic
4
sclerosis proteinopathy?
4
proteinopathy? amyotrophic
4

Similar Publications

Background: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).

View Article and Find Full Text PDF

Background: Protein misfolding is a key pathological phenomenon driving neurodegenerative diseases that affect millions of people. Visualizing this misfolding process with smart imaging probes would greatly facilitate early diagnosis, etiology elucidation, disease progression monitoring, and drug discovery of neurodegeneration. Although numerous probes have been reported, several unmet needs still exist.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that can result in a progressive loss of speech due to bulbar dysfunction, which can have significant negative impact on the patient's mental well-being. Alternative Augmentative Communication (AAC) strategies based on synthetic voices have been shown to assist patients in maintaining communication and improving their Quality of Life (QoL). However, such synthetic voices are often perceived as impersonal and fail to capture the unique voice and identity of the patient.

View Article and Find Full Text PDF

The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.

View Article and Find Full Text PDF

An abnormal expansion of a GGGGCC (GC) hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we develop here a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform curbed the expression of the GC repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci, reduced the production of a dipeptide repeat protein, and reversed transcriptional deficits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!