Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole.

Int J Pharm

Laboratorium voor Farmacotechnologie en Biofarmacie, Faculteit Farmaceutische Wetenschappen, K.U.Leuven, Campus Gasthuisberg O+N, Herestraat 49, B-3000 Leuven, Belgium.

Published: October 2005

The purpose of the present study was to characterize the solid state properties of ternary solid dispersions made up of PVP VA64, Myrj 52 and itraconazole. The solid dispersions were prepared by dissolving the materials in methylene chloride, followed by evaporation under reduced pressure of the solvent at 55 degrees C in a rotovapor. Binary and ternary solid dispersions were characterized by standard and modulated temperature differential scanning calorimetry and X-ray powder diffraction. Although PVP VA64 and itraconazole were found to be completely miscible in the solid state, addition of a small amount of Myrj 52 to the drug-polymer system leads to separation of itraconazole thus demonstrating that Myrj 52 expels the drug from the polymer phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2005.07.002DOI Listing

Publication Analysis

Top Keywords

solid dispersions
16
solid state
12
ternary solid
12
pvp va64
12
va64 myrj
8
myrj itraconazole
8
solid
7
state characteristics
4
characteristics ternary
4
dispersions
4

Similar Publications

Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-InSe).

View Article and Find Full Text PDF

We investigate the effects of water-processable celluloses on the charge-transport properties in the conducting polymer composites and their solid-state organic electrochemical transistors (OECTs). Water-soluble methyl cellulose (MC) and water-dispersible cellulose nanofiber (CNF) are blended with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in solution and used as a conductive channel. Both cellulose-PEDOT:PSS composites show fibrillar structures in thin films with respective dimensions of cellulose.

View Article and Find Full Text PDF

Unveiling the impact of preparation methods, matrix/carrier type selection and drug loading on the supersaturation performance of amorphous solid dispersions.

Int J Pharm

January 2025

Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece. Electronic address:

Amorphous solid dispersions (ASDs) are widely recognized for their potential to enhance the solubility of poorly water-soluble drugs, with factors such as molecular mobility, intermolecular interactions, and storage conditions playing critical roles in their performance. However, the influence of preparation methods on their performance remains underexplored, especially regarding their supersaturation performance. To address this gap, the present study systematically investigates ASDs of ibuprofen (IBU, used as a model drug) prepared using two widely utilized techniques (solvent evaporation, SE, and melt-quench cooling, M-QC).

View Article and Find Full Text PDF

Electronic structure of superconducting infinite-layer lanthanum nickelates.

Sci Adv

January 2025

National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.

Revealing the momentum-resolved electronic structure of infinite-layer nickelates is essential for understanding this class of unconventional superconductors but has been hindered by the formidable challenges in improving the sample quality. In this work, we report the angle-resolved photoemission spectroscopy of superconducting LaSrNiO films prepared by molecular beam epitaxy and in situ atomic-hydrogen reduction. The measured Fermi topology closely matches theoretical calculations, showing a large Ni [Formula: see text]-derived Fermi sheet that evolves from hole-like to electron-like along and a three-dimensional (3D) electron pocket centered at the Brillouin zone corner.

View Article and Find Full Text PDF

Electrochromic Fabric Device Based on Lamellar Polyaniline through Inkjet Printing.

Macromol Rapid Commun

January 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Flexible electrochromic devices (FECD) have been widely applied in smart displays, wearable devices, and other fields, however, the synchronous improvement of electrochromic performance and flexibility is still a challenge. In this paper, a fabric-based FECD with "side-by-side" structure is designed and constructed through inkjet printing. The polyaniline nanosheets with good dispersion are used as ink and electrochromic material, and the self-developed semi-solid electrolyte based on polyvinyl alcohol serves as gel electrolyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!