Objective: To compare the formation of gap junctions between detrusor smooth muscle cells in situ and the distribution of connexin (Cx)40, Cx43 and Cx45 expressions in bladder biopsies from a control group (with bladder tumour) and from patients with urge symptoms, as smooth muscle cells of the human detrusor muscle communicate via gap junctions and express several connexin subtypes, alterations of which may be involved in the causes of lower urinary tract symptoms.

Materials And Methods: Connexin expression is prominent in myofibroblast-like cells, supposedly involved in afferent signalling pathways of the bladder. Their strategic position directly beneath the urothelium suggests they are a link between urothelial ATP signalling during bladder filling and afferent Adelta-fibre stimulation for co-ordination of bladder tonus and initialization of the micturition reflex. Modification of their coupling characteristics may have profound impact on bladder sensation. Bladder tissue probes of patients undergoing cystectomy or transurethral tumour resection for bladder cancer were used as controls. Tissue samples from patients with severe idiopathic urge symptoms were taken for exclusion diagnostics of interstitial cystitis (IC) and carcinoma in situ. The formation of functional syncytia between detrusor smooth muscle cells were examined in dye-coupling experiments by injecting with Lucifer Yellow. The morphology and structure of gap junctions were assessed by transmission electron microscopy and immunogold labelling of Cx43 and Cx45. The expression of connexin subtypes Cx40, Cx43 and Cx45 was compared by indirect immunofluorescence, and confocal laser scanning microscopy used for semiquantitative analysis.

Results: There was dye coupling between smooth muscle cells of the detrusor in situ. Electron microscopy and immunogold labelling showed very small gap junctional plaques. These findings were confirmed by confocal immunofluorescence. Semiquantitative analyses showed significantly higher Cx43 expression in the detrusor muscle, and a tendency to higher Cx45 expression in the suburothelial layer associated with urge symptoms, whereas Cx40 expression was unaffected.

Conclusions: Smooth muscle cells of the human detrusor muscle are coupled by classical gap junctions, forming limited local functional syncytia. Both Cx43 and Cx45 are expressed at low levels in normal detrusor. Up-regulation of Cx43 in patients with urge incontinence supports the possibility of functional changes in the syncytial properties of detrusor smooth muscle cells in this condition. In addition, the observed increase of Cx45 in the myofibroblast cell layer supports the idea that alterations in sensory signalling are also involved. Comparison with previous reports implies that the pathophysiology of urgency is distinct from that of the unstable bladder and other forms of incontinence.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1464-410X.2005.05703.xDOI Listing

Publication Analysis

Top Keywords

smooth muscle
24
muscle cells
24
urge symptoms
16
gap junctions
16
cx43 cx45
16
patients urge
12
detrusor smooth
12
detrusor muscle
12
bladder
10
muscle
9

Similar Publications

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Elevated phosphate levels in CKD - a direct threat for the heart.

Nephrol Dial Transplant

January 2025

Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.

Elevations in systemic phosphate levels, also called hyperphosphatemia, occur in chronic kidney disease (CKD) and during the normal aging process and are associated with various pathologies, such as cardiovascular injury. Experimental studies suggest that at high serum concentrations, phosphate can induce osteogenic differentiation of vascular smooth muscle cells and contribute to vascular calcification. However, the precise underlying mechanism leading to cardiovascular injury is not well understood.

View Article and Find Full Text PDF

Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.

View Article and Find Full Text PDF

Introduction: Sildenafil, a selective phosphodiesterase 5 inhibitor, modulates vascular dysfunction, with hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation, migration, and invasion closely implicated in vascular remodeling in persistent pulmonary hypertension of the newborn (PPHN). This study aimed to assess sildenafil's protective effects against PPHN and elucidate underlying molecular pathways.

Methods: Cell Counting Kit-8, wound healing, and Transwell assays evaluated rat PASMC proliferation, migration, and invasion under hypoxia.

View Article and Find Full Text PDF

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!