How many ryanodine binding sites are involved in caffeine induced calcium release from sarcoplasmic reticulum terminal cysternae vesicles?

Z Naturforsch C J Biosci

Max-Planck-Institut für Medizinische Forschung, Abteilung Physiologie, Heidelberg, Bundesrepublik Deutschland.

Published: July 1992

The inhibition by ryanodine of caffeine induced calcium release from actively loaded heavy sarcoplasmic vesicles has been studied in order to analyse the relation between the occupancy of the vesicular calcium release channels by ryanodine and channel function. Ryanodine binding was monitored with [3H]ryanodine under ionic conditions favouring the establishment of binding equilibrium. Binding follows 1:1 stoichiometry yielding dissociations constants between 7-12 nM and 12-15 pmol ryanodine/mg vesicular protein as maximum number of ryanodine binding sites. When ryanodine labeling was monitored by measuring the decline of the amplitude of caffeine induced calcium release 50% inhibition occurred at a free ryanodine concentration of 1 nM. At this concentration less than 10% of the available ryanodine binding sites are occupied. Caffeine induced calcium release is completely abolished when 3 pmol ryanodine/mg have reacted. A corresponding divergence between ryanodine binding and its effect on caffeine induced calcium release was observed when the initial rate of ryanodine binding was measured either by labeling the vesicles with [3H]ryanodine or by following the decline with time of caffeine induced calcium release. Caffeine induced calcium release declines four times faster than the fraction of unoccupied ryanodine binding sites, k = 4.3 x 10(4) M-1 s-1 versus 1.2 x 10(4) M-1 s-1. The observed interrelation between the occupation of ryanodine binding sites and its effect on caffeine induced calcium release indicates that the caffeine sensitive calcium channel functions as an assembly of at least 4 ryanodine binding sites whereby the occupation of one site suffices to abolish calcium release. The stoichiometric composition appears to be not fixed but might change according to the size of the fraction of ryanodine receptors exhibiting caffeine sensitivity. The reported data were evaluated according to the algorithm derived by H. Asai and M. F. Morales, J. Biol. Chem. 4, 830-838 (1965) for the activity of a macromolecule and the extent of an inhibiting reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1515/znc-1992-1-223DOI Listing

Publication Analysis

Top Keywords

calcium release
40
ryanodine binding
36
caffeine induced
32
induced calcium
32
binding sites
24
ryanodine
14
calcium
11
caffeine
10
release
10
binding
10

Similar Publications

Article Synopsis
  • Colorectal cancer (CRC) is a major cause of cancer deaths, and oxaliplatin (OXA) is a primary treatment that faces challenges due to the tumor microenvironment (TME).
  • A new multifunctional nanosystem, Rg3-Lip-OXA/CaO, uses Ginsenoside Rg3 liposomes to target CRC cells, delivering OXA and calcium peroxide (CaO) together.
  • Research showed that this nanosystem had good stability and release properties, effectively targeted cancer cells, and significantly suppressed tumor growth in mice, while also showing manageable acute toxicity.
View Article and Find Full Text PDF

The amount of colloidal calcium phosphate (CCP) complex associated with caseins (insoluble [INSOL] Ca) determines the body, texture, flavor, and breakdown of cheese constituents during aging. The continuous pH decline during cheesemaking because of lactic acid fermentation results in solubilization of INSOL Ca. Measuring INSOL Ca in such a dynamic and wide range pH system (6.

View Article and Find Full Text PDF

Monitoring of inflammatory preterm responses via myometrial cell based multimodal electrophysiological and optical biosensing platform.

Biosens Bioelectron

January 2025

Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China. Electronic address:

Preterm birth (PTB) remains a leading cause of neonatal morbidity and mortality, with inflammation-induced PTB posing a significant challenge due to its complex pathophysiology. To address this, we developed an in vitro platform utilizing hTERT-immortalized human myometrial (hTERT-HM) cells integrated with a multielectrode array (MEA) biosensing system and optical calcium imaging. Compared to primary uterine myometrial cells, hTERT-HM cells exhibit superior reproducibility, high scalability, and convenient manipulation, facilitating the consistent and large-scale investigations.

View Article and Find Full Text PDF

Degradation of antibiotic pollutants and simultaneous CO capture over hollow MnO/light/peroxymonosulfate (PMS)-CaO system.

J Colloid Interface Sci

January 2025

School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:

Antibiotic organic pollutants not only pose a significant threat to human health but also generate a large amount of carbon dioxide (CO) during the treatment process of advanced oxidation processes (AOPs). Herein, the antibiotics aqueous solution was firstly degraded and mineralized by light-assisted peroxymonosulfate (PMS) activation over hollow manganese dioxide (MnO) catalyst and then the corresponding released CO was effectively captured by calcium oxide (CaO) particles in the same sealed reactor, achieving wastewater treatment with zero carbon releasing. Under simulated light conditions, hollow MnO is excited to generate electron-hole pairs.

View Article and Find Full Text PDF

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!