A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Involvement of the p97-Ufd1-Npl4 complex in the regulated endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors. | LitMetric

Inositol 1,4,5-trisphosphate (IP(3)) receptors form tetrameric, IP(3)-gated channels in endoplasmic reticulum membranes that govern the release of Ca(2+) from this organelle. In response to activation of certain G protein-coupled receptors that persistently elevate IP(3) concentration, IP(3) receptors are ubiquitinated and degraded by the ubiquitin-proteasome pathway. IP(3) receptor ubiquitination is mediated by the ubiquitin-conjugating enzyme, (mam)Ubc7, a component of the endoplasmic reticulum-associated degradation pathway. However, the mechanism by which ubiquitinated IP(3) receptors are transferred to the proteasome is not known. Here, we examine this process and show in several mammalian cell types that the ATPase p97 associates with IP(3) receptors in response to hormonal stimuli that induce IP(3) receptor ubiquitination. To examine the functional relevance of the p97 interaction with IP(3) receptors, we stably and specifically reduced p97 protein levels by 62 +/- 3% in Rat-1 fibroblasts using RNA interference. In these cells, endothelin-1-induced IP(3) receptor degradation was markedly retarded and the accumulation of ubiquitinated IP(3) receptors was markedly enhanced. These effects were reversed by expression of exogenous p97. In addition, Ufd1 and Npl4, which complex with p97, also associated with IP(3) receptors upon hormonal stimulation. We conclude that the p97-Ufd1-Npl4 complex couples ubiquitinated IP(3) receptors to proteasomal degradation and, thus, plays a key role in IP(3) receptor processing. These data also establish that the p97-Ufd1-Npl4 complex mediates endoplasmic reticulum-associated degradation in mammalian cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1483127PMC
http://dx.doi.org/10.1074/jbc.M508890200DOI Listing

Publication Analysis

Top Keywords

ip3 receptors
32
ip3 receptor
16
ip3
13
p97-ufd1-npl4 complex
12
endoplasmic reticulum-associated
12
reticulum-associated degradation
12
ubiquitinated ip3
12
receptors
10
inositol 145-trisphosphate
8
receptor ubiquitination
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!