Mutant p53 is a cancer-specific target for pharmacologic intervention. We show that histone deacetylase inhibitors such as FR901228 and trichostatin A completely depleted mutant p53 in cancer cell lines. This depletion was preceded by induction of p53-regulated transcription. In cells with mutant p53 pretreated with histone deacetylase inhibitors, DNA damage further enhanced the p53 trans-function. Furthermore, histone deacetylase inhibitors were preferentially cytotoxic to cells with mutant p53 rather than to cells lacking wild-type p53. We suggest that, by either restoring or mimicking p53 trans-functions, histone deacetylase inhibitors initiate degradation of mutant p53. Because mutant p53 is highly expressed, a sudden restoration of p53-like functions is highly cytotoxic to cells with mutant p53. In a broader perspective, this shows how selectivity may be achieved by targeting a non-cancer-specific target, such as histone deacetylases, in the presence of a cancer-specific alteration, such as mutant p53.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-04-3433DOI Listing

Publication Analysis

Top Keywords

mutant p53
36
histone deacetylase
20
deacetylase inhibitors
20
p53
12
cells mutant
12
mutant
8
cytotoxic cells
8
histone
6
deacetylase
5
inhibitors
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!