In this study, we examined the role of protein kinase C (PKC)-epsilon in the apoptosis and survival of glioma cells using tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-stimulated cells and silencing of PKCepsilon expression. Treatment of glioma cells with TRAIL induced activation, caspase-dependent cleavage, and down-regulation of PKCepsilon within 3 to 5 hours of treatment. Overexpression of PKCepsilon inhibited the apoptosis induced by TRAIL, acting downstream of caspase 8 and upstream of Bid cleavage and cytochrome c release from the mitochondria. A caspase-resistant PKCepsilon mutant (D383A) was more protective than PKCepsilon, suggesting that both the cleavage of PKCepsilon and its down-regulation contributed to the apoptotic effect of TRAIL. To further study the role of PKCepsilon in glioma cell apoptosis, we employed short interfering RNAs directed against the mRNA of PKCepsilon and found that silencing of PKCepsilon expression induced apoptosis of various glioma cell lines and primary glioma cultures. To delineate the molecular mechanisms involved in the apoptosis induced by silencing of PKCepsilon, we examined the expression and phosphorylation of various apoptosis-related proteins. We found that knockdown of PKCepsilon did not affect the expression of Bcl2 and Bax or the phosphorylation and expression of Erk1/2, c-Jun-NH2-kinase, p38, or STAT, whereas it selectively reduced the expression of AKT. Similarly, TRAIL reduced the expression of AKT in glioma cells and this decrease was abolished in cells overexpressing PKCepsilon. Our results suggest that the cleavage of PKCepsilon and its down-regulation play important roles in the apoptotic effect of TRAIL. Moreover, PKCepsilon regulates AKT expression and is essential for the survival of glioma cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360842 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-05-1064 | DOI Listing |
Prev Nutr Food Sci
December 2024
Department of Culinary Arts & Hotel Food Service, Yeonsung University, Gyeonggi 14011, Korea.
The inhibitory effect of L. on adipocyte differentiation can be enhanced by lactic acid bacteria (LAB) fermentation. In this study, we assessed the cellulose resolution, L.
View Article and Find Full Text PDFFront Immunol
December 2024
Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Background: Muscle-invasive bladder cancer (MIBC) is a prevalent cancer characterized by molecular and clinical heterogeneity. Assessing the spatial heterogeneity of the MIBC microenvironment is crucial to understand its clinical significance.
Methods: In this study, we used imaging mass cytometry (IMC) to assess the spatial heterogeneity of MIBC microenvironment across 185 regions of interest in 40 tissue samples.
Heliyon
December 2024
Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
CD204 is a distinct indicator for tumor-associated macrophages (TAMs) in glioma. Evidence indicates that CD204-positive TAMs are involved in the aggressive behavior of various types of cancers. This study was conducted to develop a new and effective peptide-based vaccine for GBM, specifically targeting CD204.
View Article and Find Full Text PDFExplor Target Antitumor Ther
October 2024
Depts of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Dr E Borges Marg, Parel, Mumbai 400012, India.
Fibroblast-activated protein (FAP) expression in glial cells is attributed to FAP-positive foci on tumor vessels and neoplastic cells. Preclinical and pilot studies have shown FAP expression in high-grade gliomas. We aimed at comparing PET imaging with FAP-inhibitor (FAPI-PET) with current standard, i.
View Article and Find Full Text PDFHeliyon
January 2025
BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000, Novi Sad, Serbia.
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer associated with poor survival rates. We developed novel mesoporous silica nanoparticles (MSNs)-based nanocarriers for pH-responsive delivery of a therapeutic drug Paclitaxel (PTX) to GBM tumor cells. The pores of MSNs are loaded with PTX, which is retained by β-cyclodextrin (CD) moieties covalently linked to the pore entrances through a hydrazone linkage, which is cleavable in weakly acidic environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!