The enzymatic methylation of inorganic As (iAs) is catalyzed by As(+3 oxidation state)-methyltransferase (AS3MT). AS3MT is expressed in rat liver and in human hepatocytes. However, AS3MT is not expressed in UROtsa, human urothelial cells that do not methylate iAs. Thus, UROtsa cells are an ideal null background in which the role of iAs methylation in modulation of toxic and cancer-promoting effects of this metalloid can be examined. A retroviral gene delivery system was used in this study to create a clonal UROtsa cell line (UROtsa/F35) that expresses rat AS3MT. Here, we characterize the metabolism and cytotoxicity of arsenite (iAs(III)) and methylated trivalent arsenicals in parental cells and clonal cells expressing AS3MT. In contrast to parental cells, UROtsa/F35 cells effectively methylated iAs(III), yielding methylarsenic (MAs) and dimethylarsenic (DMAs) containing either As(III) or As(V). When exposed to MAs(III), UROtsa/F35 cells produced DMAs(III) and DMAs(V). MAs(III) and DMAs(III) were more cytotoxic than iAs(III) in UROtsa and UROtsa/F35 cells. The greater cytotoxicity of MAs(III) or DMAs(III) than of iAs(III) was associated with greater cellular uptake and retention of each methylated trivalent arsenical. Notably, UROtsa/F35 cells were more sensitive than parental cells to the cytotoxic effects of iAs(III) but were more resistant to cytotoxicity of MAs(III). The increased sensitivity of UROtsa/F35 cells to iAs(III) was associated with inhibition of DMAs production and intracellular accumulation of MAs. The resistance of UROtsa/F35 cells to moderate concentrations of MAs(III) was linked to its rapid conversion to DMAs and efflux of DMAs. However, concentrations of MAs(III) that inhibited DMAs production by UROtsa/F35 cells were equally toxic for parental and clonal cell lines. Thus, the production and accumulation of MAs(III) is a key factor contributing to the toxicity of acute iAs exposures in methylating cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2366102PMC
http://dx.doi.org/10.1016/j.taap.2004.12.007DOI Listing

Publication Analysis

Top Keywords

urotsa/f35 cells
28
cells
15
parental cells
12
human urothelial
8
urothelial cells
8
cells expressing
8
oxidation state-methyltransferase
8
as3mt expressed
8
urotsa/f35
8
methylated trivalent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!