Rhizobium sp. NGR234 nodulates many plants, some of which react to proteins secreted via a type three secretion system (T3SS) in a positive- (Flemingia congesta, Tephrosia vogelii) or negative- (Crotalaria juncea, Pachyrhizus tuberosus) manner. T3SSs are devices that Gram-negative bacteria use to inject effector proteins into the cytoplasm of eukaryotic cells. The only two rhizobial T3SS effector proteins characterized to date are NopL and NopP of NGR234. NopL can be phosphorylated by plant kinases and we show this to be true for NopP as well. Mutation of nopP leads to a dramatic reduction in nodule numbers on F. congesta and T. vogelii. Concomitant mutation of nopL and nopP further diminishes nodulation capacity to levels that, on T. vogelii, are lower than those produced by the T3SS null mutant NGR(Omega)rhcN. We also show that the T3SS of NGR234 secretes at least one additional effector, which remains to be identified. In other words, NGR234 secretes a cocktail of effectors, some of which have positive effects on nodulation of certain plants while others are perceived negatively and block nodulation. NopL and NopP are two components of this mix that extend the ability of NGR234 to nodulate certain legumes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2005.04768.x | DOI Listing |
Plant Methods
June 2021
State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, East Campus, Guangzhou, 510006, China.
Background: Protocols for Agrobacterium rhizogenes-mediated hairy root transformation of the model legume Lotus japonicus have been established previously. However, little efforts were made in the past to quantify and improve the transformation efficiency. Here, we asked whether effectors (nodulation outer proteins) of the nodule bacterium Sinorhizobium sp.
View Article and Find Full Text PDFAppl Environ Microbiol
March 2017
Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
The type III secretion system (T3SS) is a specialized secretion apparatus that is commonly used by many plant and animal pathogenic bacteria to deliver proteins, termed effectors, to the interior of the host cells. These effectors suppress host defenses and interfere with signal transduction pathways to promote infection. Some rhizobial strains possess a functional T3SS, which is involved in the suppression of host defense responses, host range determination, and symbiotic efficiency.
View Article and Find Full Text PDFMol Microbiol
January 2009
Laboratoire de Biologie Moléculaire des Plantes Supérieures, Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland.
A type III protein secretion system (T3SS) is an important host range determinant for the infection of legumes by Rhizobium sp. NGR234. Although a functional T3SS can have either beneficial or detrimental effects on nodule formation, only the rhizobial-specific positively acting effector proteins, NopL and NopP, have been characterized.
View Article and Find Full Text PDFFEMS Microbiol Lett
June 2007
Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, University of Missouri, Columbia, MO 65211, USA.
Mol Microbiol
September 2005
Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, Université de Genève, 30 quai Ernest-Ansermet, 1211, Genève 4, Switzerland.
Rhizobium sp. NGR234 nodulates many plants, some of which react to proteins secreted via a type three secretion system (T3SS) in a positive- (Flemingia congesta, Tephrosia vogelii) or negative- (Crotalaria juncea, Pachyrhizus tuberosus) manner. T3SSs are devices that Gram-negative bacteria use to inject effector proteins into the cytoplasm of eukaryotic cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!