Fluorescence microscopy of trypanosomes from drug treated mice shows that biologically active heterocyclic diamidines that target the DNA minor groove bind rapidly and specifically to parasite kinetoplast DNA (k-DNA). The observation that the kinetoplast is destroyed, generally within 24 hours, after drug treatment is very important for understanding the biological mechanism, and suggests that the diamidines may be inhibiting some critical opening/closing step of circular k-DNA. Given the uncertainties in the biological mechanism, we have taken an empirical approach to generating a variety of synthetic compounds and DNA minor groove interactions for development of improved and new biological activities. Furamidine, DB75, is a diphenyl-diamidine that has the curvature to match the DNA minor groove as expected in the classical groove interaction model. Surprisingly, a linear diamidine with a nitrogen rich linker has significantly stronger binding than furamidine due to favorable linker and water-mediated DNA interactions. The water interaction is very dependant on compound structure since other linear compounds do not have similar interactions. Change of one phenyl of furamidine to a benzimidazole does not significantly enhance DNA binding but additional conversion of the furan to a thiophene (DB818) yields a compound with ten times stronger binding. Structural analysis shows that DB818 has a very favorable curvature for optimizing minor groove interactions. It is clear that there are many ways for compounds to bind to k-DNA and exert specific effects on kinetoplast replication and/or transcription that are required to obtain an active compound.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568011054222319DOI Listing

Publication Analysis

Top Keywords

minor groove
20
dna minor
16
dna
8
target dna
8
dna interactions
8
biological mechanism
8
groove interactions
8
stronger binding
8
groove
6
minor
5

Similar Publications

Carbonless DNA.

Phys Chem Chem Phys

January 2025

Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.

Carbonless DNA was designed by replacing all carbon atoms in the standard DNA building blocks with boron and nitrogen, ensuring isoelectronicity. Electronic structure quantum chemistry methods (DFT(ωB97XD)/aug-cc-pVDZ) were employed to study both the individual building blocks and the larger carbon-free DNA fragments. The reliability of the results was validated by comparing selected structures and binding energies using more accurate methods such as MP2, CCSD, and SAPT2+3(CCD)δ.

View Article and Find Full Text PDF

Satellite DNA shapes dictate pericentromere packaging in female meiosis.

Nature

January 2025

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1).

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) endonucleases are key enzymes responsible for the repair of base-less nucleotides generated by spontaneous hydrolysis or as DNA repair intermediates. APE1, the major human AP endonuclease, is a druggable target in cancer and its biological function has been extensively studied. However, the molecular features responsible for its substrate specificity are poorly understood.

View Article and Find Full Text PDF

Comprehensive Investigations About the Binding Interactions of Sudan Dyes with DNA by Spectroscopy and Docking Methods.

J Fluoresc

January 2025

School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224007, People's Republic of China.

Sudan dyes are recognized as carcinogens, which are strictly determined whether there are them in food for food safety. Hence, in order to understand the mechanism at the molecular level, this work investigated the binding interactions of Sudan I-IV with calfthy mus DNA. The synchronous fluorescence and UV-vis spectral results suggested the complex formation between Sudan I-IV and ct-DNA.

View Article and Find Full Text PDF

BLV-CoCoMo Dual qPCR Assay Targeting LTR Region for Quantifying Bovine Leukemia Virus: Comparison with Multiplex Real-Time qPCR Assay Targeting Region.

Pathogens

December 2024

Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

The proviral load (PVL) of the bovine leukemia virus (BLV) is a useful index for estimating disease progression and transmission risk. Real-time quantitative PCR techniques are widely used for PVL quantification. We previously developed a dual-target detection method, the "Liquid Dual-CoCoMo assay", that uses the coordination of common motif (CoCoMo) degenerate primers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!