Chronic inflammation has long been suggested to constitute a risk factor for a variety of epithelial cancers such as malignancies of prostate, cervix, esophagus, stomach, liver, colon, pancreas, and bladder. An inflammatory response is typically accompanied by generation of free radicals, stimulation of cytokines, chemokines, growth and angiogenic factors. Free radicals, capable of both directly damaging DNA and affecting the DNA repair machinery, enhance genetic instability of affected cells, thus contributing to the first stage of neoplastic transformation also known as "initiation". Cytokines and growth factors can further promote tumor growth by stimulating cell proliferation, adhesion, vascularization, and metastatic potential of later stage tumors. Nuclear factor kappa B (NF-kappaB) is a family of ubiquitously expressed transcription factors that are widely believed to trigger both the onset and the resolution of inflammation. NF-kappaB also governs the expression of genes encoding proteins essential in control of stress response, maintenance of intercellular communications, and regulation of cellular proliferation and apoptosis. Recent data have expanded the concept of inflammation as a critical component in carcinogenesis suggesting new anti-inflammatory therapies for a complementary approach in treating a variety of tumor types. These observations highlighted the NF-kappaB pathway as an attractive avenue for drug discovery and development. The present review will outline recent advances in our understanding of NF-kappaB function in the inflammatory processes and its input in tumor initiation/promotion, as well as summarize the development of animal and cell culture models for validating drug candidates with NF-kappaB-modulating activities, and applications of the latter in cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568009054629645 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Aix-Marseille Université-CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille 13009, France.
Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Plant Cell Rep
January 2025
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700 009, India.
Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.
View Article and Find Full Text PDFCancer Med
February 2025
Department of General Surgery, The First People's Hospital of Baiyin (Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine), Baiyin, China.
Background: Photodynamic therapy (PDT) is a noninvasive cancer treatment that works by using light to stimulate the production of excessive cytotoxic reactive oxygen species (ROS), which effectively eliminates tumor cells. However, the therapeutic effects of PDT are often limited by tumor hypoxia, which prevents effective tumor cell elimination. The oxygen (O) consumption during PDT can further exacerbate hypoxia, leading to post-treatment adverse events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!