Mouse infection models for space flight immunology.

Adv Space Biol Med

Division of Biology and Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA.

Published: September 2005

Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1569-2574(05)10004-5DOI Listing

Publication Analysis

Top Keywords

space flight
20
host resistance
8
immune response
8
response gene
8
space
5
flight
5
mouse infection
4
infection models
4
models space
4
flight immunology
4

Similar Publications

Characterization of the Micro-Morphology and Compositional Distribution of Chang'e-5 Lunar Soil Mineral Surfaces Using TOF-SIMS.

Adv Sci (Weinh)

January 2025

Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.

The lunar soil samples returned by China's Chang'e-5 (CE-5) contain valuable information on geological evolutions on the Moon. Herein, by employing high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), five rock chip samples from the CE-5 lunar soil are characterized in-depth, which reveal micro-morphological and compositional features. From the elemental/molecular ion distribution images, minerals such as pyroxene, ilmenite, feldspar, K-rich glass, silica, and silicate minerals are identified, along with their occurrence states and distribution results.

View Article and Find Full Text PDF

Emily Shepard.

Curr Biol

January 2025

Department of Biosciences, Swansea University, Swansea SA2 8PP, UK. Electronic address:

Interview with Emily Shepard, who studies the effects of the aerial environment on bird behaviour, energetics and space use at Swansea University.

View Article and Find Full Text PDF

The radium dial painters (RDP) are a well-described group of predominantly young women who incidentally ingested 226Ra and 228Ra as they painted luminescent watch dials in the first part of the twentieth century. In 1974 pathologist Dr. William D.

View Article and Find Full Text PDF

Structural health monitoring (SHM) systems are critical in ensuring the safety of space exploration, as spacecraft and structures can experience detrimental stresses and strains. By deploying conventional strain gauges, SHM systems can promptly detect and assess localized strain behaviors in structures; however, these strain gauges are limited by low sensitivity (gauge factor, GF ∼ 2). This study introduces an approach to printing strain gauges with high sensitivity, while also considering stretchability and long-term durability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!