A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ranked set sampling for efficient estimation of a population proportion. | LitMetric

Ranked set sampling for efficient estimation of a population proportion.

Stat Med

Department of Public Health Sciences, Wake Forest University, Winston Salem, NC 27157, USA.

Published: November 2005

Ranked set sampling (RSS) is a sampling procedure that can be considerably more efficient than simple random sampling (SRS). It involves preliminary ranking of the variable of interest to aid in sample selection. Although ranking processes for continuous variables that are implemented through either subjective judgement or via the use of a concomitant variable have been studied extensively in the literature, the use of RSS in the case of a binary variable has not been investigated thoroughly. In this paper we propose the use of logistic regression to aid in the ranking of a binary variable of interest. We illustrate the application of RSS to estimation of a population proportion with an example based on the National Health and Nutrition Examination Survey III data set. Our results indicate that this use of logistic regression improves the accuracy of the preliminary ranking in RSS and leads to substantial gains in precision for estimation of a population proportion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.2158DOI Listing

Publication Analysis

Top Keywords

estimation population
12
population proportion
12
ranked set
8
set sampling
8
preliminary ranking
8
variable interest
8
binary variable
8
logistic regression
8
sampling
4
sampling efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!